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In today’s marketplace, firms’ exposure to business uncertainties and risks are 

continuously increasing as they strive to meet dynamically changing customer needs 

under intensifying competitive pressures. Consequently, modern supply chains are 

continuously evolving to effectively manage these uncertainties and the allied risks 

through both operational and financial hedging strategies. In practice, firms extensively 

use operational hedging strategies such as operational flexibility, capacity flexibility, 

postponement, multi-sourcing, supplier diversification, component commonality, 

substitutability, transshipments and holding excess stocks as operational means for risk 

management. On the other hand, financial hedging which involves buying and selling 

financial instruments, carrying large cash reserves or adopting conservative financial 

policies, changes the cash flow stream of the firms and may help to reduce the firms 

exposure to business risks and uncertainties. Overall, in this dissertation we explore how 

risk management can be integrated with operating decisions so as to improve the firm 

value creating more wealth for the shareholders.   
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In the first essay, we focus on capacity flexibility as a means of operational 

hedging for risk management in an MTO production environment under demand 

uncertainty. We demonstrate that capacity flexibility may not only be used to hedge 

against the demand uncertainty, but may also be employed to effectively protect against 

possible suboptimal operating decisions in the future. In the second essay, we focus on 

operational hedging in financially constrained startup firms when making short-term 

production and long-term investment decisions. We provide an analytical characterization 

of the optimal investment and operating decisions and analyze the impact of market 

parameters on the operations of the firm. Our findings highlight an interesting operational 

hedging behavior between the process investment decisions and the short-term 

production commitments of the firm when they are faced with financial constraints.  

Our third essay focuses on the value of integrated financial risk management 

activities by publicly traded established firms under the risk of incurring financial distress 

cost. Different from the existing operations management literature, we study the risk 

management by a public corporation within the value framework of finance; hence our 

findings do not require any specific assumptions about the investors' utility functions. 

Moreover, we contribute to the operations management research by examining the impact 

of the costs of financial distress on hedging and operating plans of the firm. Overall, in 

this dissertation, we examine the effective integration of operational and financial risk 

management so as to improve the firm value creating more wealth for the shareholders.   
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Chapter 1 

Executive Summary 

Uncertainty is an integral part of most real world problems in the domain of 

operations management. Today, as the product markets become more and more 

competitive, effective management of risk associated with operational uncertainties 

becomes a critical factor for the economic viability of the firms. Hence, modern supply 

chains are continuously evolving to effectively manage their uncertainties and the allied 

risks through both operational and financial hedging strategies.  

In this dissertation, we adopt the definition of hedging by Van Mieghem (2003): 

“Mitigating risk, or hedging, involves taking counterbalancing actions so that, loosely 

speaking, the future value varies less over the possible states of nature”. In this respect, 

financial hedging refers to trading financial instruments such as options, futures or other 

financial derivatives to counterbalance other actions. On the other hand, operational 

hedging refers to mitigating risk by counterbalancing actions without using financial 

instruments. In practice, as discussed by Van Mieghem (2003) operational hedging may 

take various forms such as process flexibility, operational flexibility, dual-sourcing, 

component commonality, substitutability, transshipments, holding safety stocks and 

having warranty guarantees.  

The second chapter of my dissertation specifically focuses on the value of flexible 

capacity, in an MTO production environment, to hedge against operational risks 

associated with demand uncertainty. Flexible capacity is an essential element of most 

MTO production environments in which it is crucial to quickly respond and satisfy 
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diverse customer demand. Further, given the high capital investment required for flexible 

production equipment, deciding on an adequate level of capacity flexibility is an 

important strategic problem for the firms. 

Motivated by a problem in computer manufacturing, we study a realistic multi-

period capacity management problem where we explicitly distinguish between two types 

of capacity flexibility: (1) operational flexibility and (2) process flexibility. The goal of 

this chapter is to shed light on the connection between the value of flexibility and the 

operating decisions of a firm. We demonstrate that process flexibility may not only be 

used to hedge against demand uncertainty, but may also be employed to protect against 

possible suboptimal operating decisions in the future. In particular, suboptimal myopic 

operating policies, which are common in practice, can be hedged through process 

flexibility decisions prior to the beginning of the sales season. In addition, we show that 

the value of process flexibility depends on the operating policies as well as the length of 

the planning horizon. Specifically, the value of process flexibility increases with the 

length of the planning horizon, under optimal operating policies. However, this result is 

reversed if a myopic operating policy is adopted.  

In the third chapter, we examine the operational hedging strategies for a 

financially constrained startup firm when making short-term production and long-term 

process investment decisions. Unlike their established counterparts, startup firms are 

more subject to uncertainties in firm and market characteristics, as well as in their return 

on investments. Further, startups are more restricted by debt and other financial 

considerations. Hence, they should allocate their limited amount of cash funds between 

operations and R&D very cautiously to avoid bankruptcy during the early phases of 

development. While short-term production is necessary to maintain the firm’s cash flows 

and to keep up with the cash outflows, long-term investment is vital for the survival of 
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the firm in the future. Therefore, whether to focus on short-term production to maximize 

immediate profits instead of investing in R&D is a dilemma faced by many startups early 

in their lifecycle.  

We study this dilemma by examining the production quantity and cost-reducing 

R&D investment decisions in a competitive market, using a two period model. This 

research highlights an interesting operational hedging behavior between the process 

investment decisions and the short-term production commitments of the firm. That is, a 

change in the investment policy of the firm is always accompanied by a counter-action in 

the production decisions. We show that aggressive (conservative) investment plans are 

hedged through aggressive (conservative) production decisions.   

The fourth chapter of my dissertation explores the joint financial hedging and 

operating decisions of a shareholder-value maximizing firms in commodity markets. 

Although our research is motivated by the flour milling industry, our findings can be 

easily generalized to other commodity processor firms which are exposed to fluctuations 

in commodity prices. As it is well known in the finance literature, in the absence of 

frictions, engaging in financial hedging is a neutral proposition. That is, it should not 

affect the optimal production plan, and it does not create value for firm's shareholders. 

However, when the firm faces capital market frictions, such as financial distress costs, 

bankruptcy costs, taxes and agency issues, financial hedging can contribute to 

shareholder-wealth creation.  

We illustrate how financial hedging can be utilized to enhance firm value under 

the risk of incurring costly financial distress which is a common form of capital market 

imperfection. The risk of incurring costly financial distress changes the optimal operating 

decisions of the firm, and induces more conservative production decisions with respect to 

the first-best production levels. We first quantify this under-production problem, and then 
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illustrate how financial futures can be used to mitigate it and generate more wealth for the 

shareholders. In particular, we show that a coordinated financial hedging and operating 

plan contributes to shareholder-wealth creation, (1) by reducing the firm's exposure to 

financial distress risk and mitigating the corresponding costs, and (2) by enabling the firm 

to operate at a higher level of output.  

This research contributes to the existing operations management literature in two 

ways. First, we study the risk management decisions of a public corporation within the 

value framework of finance; hence our findings do not require any specific assumptions 

about the investors' utility functions. Second, we explore the impact of the costs of 

financial distress on hedging and operating plans 

Overall, in this dissertation we examine the value of integrated risk and operations 

management decisions by firms under different economic and financial conditions. In 

Chapter 5, we summarize our results together with important managerial implications and 

point to directions for future research. 
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Chapter 2 

Managing Capacity Flexibility in Make-to-Order Production 
Environments 

2.1. INTRODUCTION 

As the competition in high-tech markets becomes more and more intense, product 

differentiation and customization becomes a top priority for many companies. For 

instance, today, most of the companies in the computer manufacturing industry allow 

their customers to customize nearly every component of their products. While product 

customization is a must for strategic competition in these markets, increased levels of 

customization also come with their own operational-level challenges. 

This chapter studies such an operational challenge recently faced by a high-tech 

make-to-order manufacturing firm: managing multiple flexible production lines to 

produce multiple product families so as to minimize the total operating cost (including 

the cost of managing process flexibility and the backlogged demand), over multiple 

production periods where the demand for the products is highly uncertain. The firm 

which motivated this research is a manufacturer of electronic devices that consist of a 

single chassis and a set of parts assembled on it. Products are grouped into families 

depending on the chassis that they are built onto and each family requires a different set 

of parts. While this work was motivated by a firm in the electronics industry, many of the 

same issues studied here are also faced by make-to-order manufacturing firms in other 

industries. 

On the demand side, customers are allowed to choose almost every part of their 

products. In particular, a customer order includes a selection of chassis type and a set of 
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parts that are available for that chassis. Therefore, it is possible to start the final assembly 

of a product only after a firm customer order is received. On the supply side, customer 

orders are produced on multiple production lines which may be adjusted to manufacture 

any set of product families prior to the start of production. The adjustments are time 

consuming and costly; hence it is not practical to change them once the production is 

started. The same set of assignments is preserved over multiple production periods, until 

a significant change in the demand pattern is observed (e.g., when a new product is 

launched or a significant price promotion is announced).  

Prior to the start of production, the firm decides a product-to-line assignment 

which we will refer to as the process flexibility of the firm. Process flexibility refers to 

the ability of a firm to produce multiple products on multiple production facilities or 

lines, as described by the process-flexibility literature (see Jordan and Graves 1995). Note 

that each line may produce multiple products and each product may be produced on 

multiple lines. 

As greater process flexibility is adopted by the firm, i.e., as more products are 

assigned to more lines, the firm’s ability to match capacity with demand improves. 

However, process flexibility comes at a cost, in particular, assigning product i to line j 

involves a certain cost depending on i and j due to: (1) pre-positioning the related parts 

and chassis inventory next to the production line, (2) computer programming and setup, 

and (3) dedicating labor and material handling equipment to produce family i on line j 

during the planning horizon. Hence each assignment increases the process flexibility of 

the firm at a certain cost. 

Once the process flexibility decision is made, operating the system by allocating 

capacity to demand is another practical challenge in a multi-period planning horizon. In 

particular, operational flexibility of the firm, i.e., the ability to dynamically change 
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capacity allocations among different product families over time, plays a critical role on 

the selection of capacity allocations. Further, operating decisions also affect the choice of 

process flexibility ex ante. 

Regarding the operational flexibility of the firm two basic modeling approaches 

are considered: (1) a Dynamic Allocation Model (DAM), where the allocation decisions 

are made after observing the demand at the beginning of each production period and (2) a 

Fixed Allocation Model (FAM), where the allocation decisions are made at the beginning 

of the planning horizon together with the assignment decisions and these decisions do not 

change in response to demand realizations from period to period. 

The sequence of decisions for our firm is as follows (see Figure 2.1): First, based 

on the forecasted demand, the firm commits to a process flexibility configuration prior to 

the start of production and incurs a certain flexibility cost. Next, at the beginning of every 

production period t, demand is realized and the production capacity is allocated to meet 

that demand and the existing backlog subject to the process flexibility configuration and 

the operational flexibility of the firm. Unmet demand from period t is backlogged and 

carried to the next production period. The overall objective (under both DAM and FAM) 

is to minimize the total operating cost over the planning horizon, which includes the cost 

of process flexibility and the expected cost of total backlog.  
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Under DAM: Process flexibility 
configuration is decided.  
Under FAM: Process flexibility 
configuration and allocation 
decisions are made.   

Period 3Period 2Period 1 

Planning Horizon 

1~d 2~d 3~d 4~d Td~

… 

Demand ( td ) is realized and,  
 (1) under DAM  allocation decisions are revised,  
 (2) under FAM allocation decisions are kept fixed. 

Period T 

Figure 2.1: A Graphical Representation of DAM and FAM 

As the sequence of decisions suggests, we model DAM as a multistage stochastic 

integer program with binary decisions only in the first stage and FAM is modeled as a 

single stage stochastic integer program. We also provide effective procedures to solve our 

mathematical models. Regarding DAM we assume that the product demands during the 

production periods are independent and identically distributed with a known distribution. 

The independence assumption is key in our development but the identically-distributed 

assumption is easily relaxed.  

Note that FAM has no operational flexibility since each line is allocated a fixed 

time to produce a certain family, while DAM has full operational flexibility. Fixing 

allocation decisions may have significant operational benefits including: reduced 

scheduling problems, operational standardization and increased efficiency (Li and 

Tirupati 1997). However, in our setting, quantifying these benefits is not straightforward 

since it is not easy to incorporate them in a mathematical decision model. In practice, our 

firm employs an operating policy that is close to FAM (allocations are rarely changed in 
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response to demand realizations). Therefore in this chapter, FAM will serve as a 

benchmark to evaluate the potential benefits of operational flexibility observed under 

DAM.  

We provide two sets of computational analyses. First, we quantify the potential 

benefits of operational flexibility by comparing the performance of DAM and FAM, in 

the presence of demand uncertainty under optimal process flexibility decisions. We 

demonstrate that operational flexibility is most beneficial when demand is well balanced 

with capacity and the variability of the demand is high. 

Second, we investigate the value of process flexibility in a multi-period 

production framework under different dynamic operating policies. For this purpose we 

introduce the myopic version of DAM as a third operating model (MDAM) where the 

firm may change the allocations at the beginning of each period, but does so without 

taking the impact on future periods into account. By comparing the value of process 

flexibility under DAM and MDAM, we show that process flexibility may not only be 

used to hedge against the demand uncertainty, but may also be employed to protect 

against possible suboptimal operating decisions in the future. In particular, firms adopting 

myopic operating policies need to form denser process flexibility chains prior to the 

beginning of the production. We further investigate the value of process flexibility as the 

length of the planning horizon changes.  

The rest of the chapter is configured as follows: In Section 2.2, we provide a brief 

review of the related literature and outline our contributions. In Section 2.3, FAM is 

explained in detail and a solution algorithm, based on Kelley’s (1960) cutting-plane 

method, is presented. Section 2.4 explains the DAM and presents a sampling-based 

decomposition method to find a near-optimal solution. Section 2.5.1 presents a 

computational study of the benefits of operational flexibility under various circumstances 
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by comparing the performance of FAM and DAM. Section 2.5.2 is dedicated to the 

analysis of the value of process flexibility. We conclude with a brief discussion of results 

and future research directions in Section 2.6. 

2.2. LITERATURE REVIEW 

Our flexible assembly line management problem is most closely related to the 

manufacturing-flexibility and production-scheduling literatures. The literature on 

manufacturing flexibility is extensive. Sethi and Sethi (1990) provide a comprehensive 

literature review of manufacturing flexibility starting from the 1920s. More recent 

literature reviews can be found in Zhang et al. (2003) and De Toni and Tonchia (1998). 

Here, our review of the manufacturing-flexibility literature is specifically focused on 

capacity flexibility. 

The capacity flexibility literature is also extensive, but the related literature can be 

categorized in two main groups. The first stream of research focuses on investment in 

plants or equipment that are dedicated versus totally flexible. The second stream of 

research allows for intermediate levels of flexibility, i.e., the capacity may be adjusted to 

any level of flexibility from dedicated- to fully-flexible production. The former stream 

includes Fine and Freund (1990), Van Mieghem (1998), Li and Tirupati (1994, 1995, 

1997) and Netessine et al. (2002). 

Fine and Freund (1990) consider a firm which has the option to invest in both 

product-dedicated capacity and flexible capacity. The latter is able to produce all kinds of 

products, but the firm has to make its investment decision prior to observing the demand. 

They model the problem as a two-stage stochastic program in which the capacity 

investment decisions are made in the first stage and the production decisions are made in 

the second stage. Their objective includes total revenues less operating and capacity 
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investment costs. They investigate the tradeoff between the cost of investing in flexible 

capacity and the ability to respond to uncertain demand. 

Van Mieghem (1998) shows the impact of price- and cost-mix differentials when 

deciding between investing in flexible and dedicated capacity. Like Fine and Freund 

(1990), he considers a model in which investment decisions are made at the beginning of 

the time horizon. Van Mieghem and Rudi (2002) extend Van Mieghem (1998) to a 

dynamic setting with multiple products, multiple processing and storage points, which is 

called a newsvendor network. 

Li and Tirupati (1994) also address investment in flexible and non-flexible 

technology. In contrast to the previous papers, they consider a multi-period problem with 

deterministic demand over time. The objective is to minimize the total discounted cost, 

which includes the cost of technology investment and the operating cost over the 

planning horizon. Heuristics are provided to generate good investment strategies. Li and 

Tirupati (1995) consider the same problem with two products and stochastic demand. 

However, in this setting unlike Van Mieghem and Fine and Freund, demand uncertainty 

is addressed by specifying a target service level. They argue that the multi-period version 

of the problem is not tractable and provide a solution method for the single-period 

problem. Li and Tirupati (1997) extend their previous two papers by explicitly 

considering two kinds of operating policies, which refer to the allocation of flexible 

capacity among different products arising from: (1) a Static Allocation Model (SAM) and 

(2) a Dynamic Allocation Model (DAM). In SAM, the allocation of flexible capacity to 

product lines is made at the beginning of the planning horizon. In DAM they permit 

dynamic allocations of flexible capacity in each period after demand realizations are 

observed. In both models the objective is to minimize the investment cost subject to 

service level constraints. For SAM, an exact exponential time algorithm is provided to 
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solve the model. Assuming a proportional allocation rule, the DAM is approximated with 

a single period model and a heuristic is provided to generate good solutions under special 

conditions. 

The literature mentioned above is similar to our work in the sense that the cost 

and benefits of flexibility are considered explicitly. However, they only consider two 

types of capacity: fully flexible and non-flexible capacity. In our case, the capacity (i.e., 

the assembly lines) can be adjusted to any intermediate level of flexibility at a certain 

cost. In addition, except for Li and Tirupati (1994) who model demand as being 

deterministic, the above papers only consider single period models which may not be 

sufficiently realistic for many practical situations as mentioned by Van Mieghem (1998): 

“… our approach may be too highly stylized to serve as a practical decision support 

system, which may need to consider more complex models for which one may need to 

resort to numerical methods …”. With its multi-period structure and stochastic demand 

our models are arguably more realistic for practical purposes. 

The second stream of capacity-flexibility literature, which originates with Jordan 

and Graves (1995), allows for choosing among resources with an intermediate level of 

flexibility. This line of research also includes Graves and Jordan (1991), Graves and 

Tomlin (2003), Garavelli (2003), and Katok et al. (2003).  

Jordan and Graves (1995) specifically focus on process flexibility, which is the 

ability of a firm to manufacture different kinds of products in the same production facility 

at the same time. Several principles of the benefits of process flexibility are developed, 

including: (1) limited flexibility (each plant builds only a few products) can achieve 

almost all the benefits of total flexibility (each plant builds all the products), and (2) 

limited flexibility should be configured to chain products and plants together as much as 

possible. Jordan and Graves (1995) provide analytical support for these principles. A 
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main focus of their paper is a measure to quantify the benefits of the given product-plant 

configuration, and they use this measure to guide the search for a good limited-flexibility 

configuration. While a configuration which yields almost all the benefits of total 

flexibility is identified, the authors do not explicitly study associated cost trade-offs. We 

explicitly model the cost of process flexibility, and in this case, the flexibility measure of 

Jordan and Graves (1995) cannot be used to guide a search for a good configuration due 

to the combinatorial nature of the problem. Additionally, Jordan and Graves (1995) 

assume that the demand uncertainty is revealed at a single time point, i.e., immediately 

after the flexibility configuration decision. This limitation is recognized by the authors 

who say: “… in practice one must allocate production capacity to the products in real 

time as the demand is realized”. Our model addresses this limitation by considering a 

multi-period model in which the unmet demand is backlogged at the end of each period. 

The results of Jordan and Graves are based on the assumption that the firm 

optimally allocates capacity after the process flexibility decision has been made. We 

reconsider this issue in a multi-period framework and study the manner in which the 

value of process flexibility depends on the operating policies employed. Indeed, we show 

that a myopic operating policy (commonly practiced) may significantly reduce the value 

of a process flexibility configuration and increase the need for more process flexibility. 

We note that Bish et al. (2005) also consider the impact of allocation policies on system 

performance in a single period, two-product, two-firm case under fully flexible and 

dedicated manufacturing settings. 

The work by Graves and Tomlin (2003) extends the chaining ideas of Jordan and 

Graves (1995) to multi-stage supply chains. They show that the effectiveness of a 

flexibility configuration, in multi-stage supply chains, is reduced due to stage-spanning 

bottlenecks and floating bottlenecks, which are not present in single-stage supply chains. 
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In contrast to the above work, Garavelli (2003) considers the logistics aspect of process 

flexibility.  

Further, Gurumurthi and Benjaafar (2004) show the effectiveness of chaining in 

queueing systems under varying parameters and control policies. Worker cross-training 

(similar to process flexibility) and skill chaining are also studied in the queueing 

literature by Hopp et al. (2004) and Iravani et al. (2007). 

Regarding the literature on production scheduling, the papers of Ahmadi et al. 

(1992) and Bollapragada and Rao (1999) are most closely related to our work. Similar to 

our setting, Ahmadi et al. (1992) consider a production facility with parallel production 

lines that are capable of producing all the product families. However, in their work, a 

setup is required to switch the production from one family to another, and this setup 

involves both a changeover cost and changeover time. Assuming a deterministic demand 

over the planning horizon, the authors develop a production schedule for each production 

line, which minimizes the total changeover and waiting cost over the planning horizon. 

Unlike our case, Ahmadi et al. (1992) assume that the changeover operation may only be 

performed at the beginning of a period. Hence, each line is dedicated to a single product 

family for that production period. Therefore, their problem is a multi-line assignment 

problem, where the lines are assigned (dedicated) to product families during a production 

period and a setup is incurred only if the assignment for a line changes between two 

consecutive periods. In our production system, since the number of product families 

exceeds the number of production lines, dedicating production lines to single products is 

not possible. In particular, dedicating a whole production line to a product family with 

relatively low demand will make our system very inefficient. So, in our problem we 

assign families to production lines and partial assignments are allowed, i.e., a family may 

be assigned to multiple lines and a line may be assigned multiple families.  
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Bollapragada and Rao (1999) consider allocating the production of multiple items 

to multiple non-identical lines under constant deterministic demand. First, the item 

demands are assigned to the production lines, as in our case, and partial allocations are 

allowed. After these assignments, in the second stage, optimal batch sizes and production 

schedules are generated for each line to minimize the sum of average production cost, 

setup cost, inventory holding cost and cost of lost sales. The assumption of deterministic 

constant demand over the planning period allows the authors to divide the problem into 

two tractable stages and solve a detailed scheduling problem in the second stage. In our 

problem, such a detailed two-stage analysis is not tractable due to multi-period stochastic 

demand. 

2.3. FIXED ALLOCATION MODEL 

In this section, we develop and analyze the fixed allocation model (FAM), which 

closely reflects current practice at the firm. In this model, both the product-to-line 

assignments (flexibility configuration) and the capacity allocations are decided before the 

production starts. Then, the allocation decisions as well as the assignment decisions are 

kept fixed throughout the planning horizon. The objective is to minimize the total 

assignment and expected backlogging costs. Details are presented below: 

Indices: 

i, M      = i indexes the product families, which total M in number 

j, N      = j indexes the production lines, which total N in number 

t, T      = t indexes time periods, which total T in number 

k         = k indexes demand realizations for period t 

Data: 

jK = capacity of production line j, per period (in time units) 

ije = amount of time needed to produce one unit of family i on line j 
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ija = assignment/flexibility cost incurred to produce family i on line j 

is        = per unit per period backlogging cost for family i; is > 0 

(.,.)ic  = backlogging cost function for family i (defined below) 
t

id~        = random demand for product family i in period t
td~        = )~...,,~( 1

t
M

t dd : vector of product family demands in period t 

id~        = )~...,,~( 1 T
ii dd : demand for family i from period 1 to T 

(notation d without “~” refers to a general demand realization) 
ktd ,      = a particular realization of demand vector in period t 
kt

id ,      = a particular realization of demand for family i in period t 

Decision variables: 

ijy       = capacity of line j allocated to produce family i, in production units 

(allocation decisions) 

ijx       = 1 if product family i is assigned to line j; 0 otherwise (assignment 

decisions) 

Fixed Allocation Model (FAM): 

, 1 1 1 1
min ( , ) (2.1)

N M M N

f ij ij i i ij ix y j i i j
z a x s Ec y d

= = = =

= +∑∑ ∑ ∑
           s.t.      

1

(2.2)

, (2.3)

{0,1}, 0 , (2.4)

M

ij ij j
i

j
ij ij

ij

ij ij

e y K j

K
y x i j

e

x y i j

=

≤ ∀

≤ ∀

∈ ≥ ∀

∑

 We use x and y to denote the vectors whose components are ijx  and ijy , 
respectively. 

The first term in the objective function is the assignment cost and the second term 

is the expected total backlogging cost over the planning horizon. The first set of 
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constraints, (2.2), limits the capacity of each line j to jK . Constraints in (2.3) are the 

design constraints, which allow a line to produce only the products that are assigned to it. 

We develop the backlogging function as follows. Let +−= ][),( 111
iiiii yddyb  be the 

backlog for family i, in period t = 1, where ∑
=

=
N

j
iji yy

1
 and where +][.  is the larger of its 

argument and 0. Then, for t = 2,…,T the backlog is recursively defined as: 

+−− −+= ]),...,,([),...,,( 1111
i

t
i

t
iii

t
i

t
iii

t
i ydddybddyb .     (2.5)  

Finally, ∑
=

≡
T

t

t
iii

t
iiii ddybdyc

1

1 ),...,,(),( . 

Proposition 2.3.1: Assume ,,...,1,~ Midi =  have finite mean and that .,...,1,0 Misi =≥  

Then, the expected total backlogging cost, i.e., ∑ ∑
= =

=
M

i
i

N

j
ijii dyEcsyf

1 1
)~,()( , is convex.

Proof: It suffices to show that each ),...,,( 1 t
iii

t
i ddyb  as defined in (2.5) is convex 

in its first argument. This follows immediately from inductive application of the 

following result: the positive part of a convex function is convex.   

The expectations in the objective function, (2.1), are with respect to the joint 

distributions of .,...,1),~,...,~(~ 1 Middd T
iii ==  If each id~  has a modest number of

realizations then it is straightforward to reformulate FAM as a mixed-integer linear 

program by introducing additional decision variables to linearize the nested positive-part 

terms in the definition of ).,( iii dyc  If id~  has many realizations or is continuous, then this

is not a viable approach. In this case, by Proposition 2.3.1 we can instead view FAM as a 

mixed-integer nonlinear program (MINLP) whose continuous relaxation is a convex 

nonlinear program. That said, it is not possible to solve such an instance of FAM by 

commercially-available MINLP solvers since we do not have an analytical expression 
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for ∑ ∑
= =

=
M

i
i

N

j
ijii dyEcsyf

1 1
)~,()( . So, we instead develop a cutting-plane algorithm to solve 

FAM. 

A cutting-plane algorithm for FAM does not require an analytical expression for 

f(y). Rather, it requires that when y is fixed to a specific value we be able to evaluate (or 

estimate) f(y) and its gradient )(yf∇ . In general, f(y) is not differentiable because its 

definition includes nested functions involving positive-part operations. The following 

proposition gives conditions under which f (y) is differentiable.  
 

Proposition 2.3.2: Assume id~  has finite first moment and has an absolutely continuous 

distribution for each i = 1,...,M. Then, ∑ ∑
= =

=
M

i
i

N

j
ijii dyEcsyf

1 1
)~,()(  is differentiable. 

Proof: It suffices to show that each )~,( iii dyEc is differentiable in .
1

∑
=

=
N

j
iji yy  We 

can express              

  
1 ,..., 1

( , ) min
T

T
t

i i i
b b t

c y d b
=

= ∑                      

                        s.t. ii ydb −≥ 11  

                          
.0...,,

,...,2,
1

1

≥

=−≥− −

T
i

t
i

tt

bb

Ttydbb
 

As a result, )~,( iii dyEc  may be viewed as the recourse function of a stochastic 

program with randomness only on its right-hand side and with complete recourse. 

Theorem 12 of Chapter 3 in Kall (1976) (see also Proposition 20 of Ruszczynski and 

Shapiro, 2003) then gives the desired result under the hypothesis that id~ has an absolutely 

continuous distribution function.  

Even though f(y) can be differentiable, in general we cannot evaluate it (or its 

gradient) exactly. That said, we can estimate each expectation )~,( iii dyEc  by Monte 

Carlo sampling. Let rid ,
~ , r = 1,…,R be independent and identically distributed (i.i.d.) as 
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id~  and estimate )~,( iii dyEc  via ∑
=

R

r
riii dyc

R 1
, )~,(1 . We let ∑ ∑

= =

=
M

i

R

r
riiiiR dyc

R
syf

1 1
, )~,(1)(

and we can define FAMR as FAM, except that the objective function is replaced by 

)(
1 1

yfxa R

N

j

M

i
ijij +∑∑

= =

. The following proposition characterizes solutions of FAMR as the 

number of replications R grows large. 

Proposition 2.3.3: Let Rrddd rMrr ,...,1),~,...,~(~
,,1 ==  satisfy ),()(lim yfyf RR

=
∞→

with 

probability one (w.p.1). Let ),( **
RR yx  denote an optimal solution to FAMR. Then every 

limit point of ∞
=1

** )},{( RRR yx  solves FAM, w.p.1. 

Proof: Pointwise convergence of )(yfR  is sufficient to ensure the desired result 

since each )~,( iii dyc  is convex and the feasible region defined by (2)-(4) is compact. See 

e.g., Shapiro (2003). 
As indicated above, we will select Rrd ri ,...,1,~

, = , to be i.i.d. from the 

distribution of id~ . In this case, the pointwise convergence hypothesis of Proposition 2.3.3

holds by the strong law of large numbers for a sample mean of i.i.d. random variables. In 

what follows, our Monte Carlo sampling scheme will generate the demand observations 

according to this i.i.d. scheme. That said, the hypothesis of Proposition 2.3.3 also holds 

under other Monte Carlo sampling schemes designed to reduce variance. While we will 

not do so here, Proposition 2.3.3 allows us to generate demand observations using, e.g., 

latin hypercube sampling, a control variates scheme or importance sampling, provided 

these sampling schemes ensure )(yfR  is a strongly consistent estimator.   

Proposition 2.3.3 justifies replacing FAM with FAMR when the number of 

replications R is sufficiently large. Fortunately, given the definition of )~,( iii dyc we can 

choose R quite large. For any finite R, )(yfR  is convex but nonsmooth. We can solve 

FAMR using Kelley’s (1960) cutting-plane method, adapted to deal with integer-valued 
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decision variables x (see, e.g., Westerlund and Pettersson 1995). At iteration κ of the 

algorithm the following problem (Master-κ ) is solved: 
 

, , 1 1

min (2.6)
N M

ij ijx y j i

z a xκ θ
θ

= =

= +∑∑
          s.t. (2.2)-(2.4) 

( ) ( ), 1,..., 1, (2.7)l l l
Rf y g y y lθ κ≥ + − = −

where ),( l
R

l yfg ∂∈ i.e., lg  is a subgradient of )(yf R  at y = .ly  

The cutting-plane algorithm at each iteration forms a first-order Taylor 

approximation, i.e., a cut, at the current iterate : ( ) ( ).l l l l
Ry f y g y y+ −  In what follows, 

the cut’s gradient, lg , and its intercept ( )l l l
Rf y g y− , will be called cut coefficients. 

When we solve Master-κ  we therefore have an outer piecewise linear approximation 
of ( )Rf y  given by

1,..., 1
max [ ( ) ( )]l l l

Rl K
f y g y y

= −
+ − . The formulation in Master-κ  linearizes 

this piecewise linear approximation via decision variable θ  and constraints (2.7). The 

details of the algorithm are given in Figure 2.2. 
 

Step 0: Initialize convergence tolerance 0>ε , iteration count 1κ = , zκ = +∞ , the 
number 

            of replications R and let rid ,
~ , r = 1,…,R  be i.i.d. as id~  for each Mi ,...,1= . 

  
Step 1: Solve Master-κ  to obtain solution ( , )x yκ κ  and value zκ .  
 

Step 2: Let 
1 1

( )
N M

ij ij R
j i

z a x f yκ κ
κ

= =

= +∑∑ . If z zκ κ<  then let z zκ κ=  and 

* *( , ) ( , ).x y x yκ κ=  If ( ) /z z zκκ κ ε− ≤  then stop and output ).,( ** yx  
 
Step 3: Let ( )Rg f yκ κ∈∂ . Add the following cut to the master problem, 

( ) ( )Rf y g y yκ κ κθ ≥ + − ; Set  1κ κ= +  and go to step 1. 
 

Figure 2.2: A Solution Method for FAM 
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The values of ε  and R should be selected so that they are commensurate. It is 

unnecessary to have the sampling error 1/ 2[ ( ( )]RVar f y ε<< , and it does not  make sense 

to solve to a precise level of ε  when the sampling error exceeds the precision. Of course, 

the sampling error can vary with y, but by choosing a reasonable allocation we can obtain 

an estimate of the sampling error and then choose ε  and R accordingly. This could be 

formalized in a two-stage procedure but we will not do so. In our computational results in 

Section 2.5 we use 510−=ε and 610=R . Similar to the method given here, Atlason et al. 

(2004) present an Infinitesimal Perturbation Analysis (IPA)-based cutting-plane method 

to solve a staff scheduling problem.  

2.4. DYNAMIC ALLOCATION MODEL 

In this section, we develop a time-dynamic allocation model. Like the FAM of the 

previous section, product-to-line assignments, i.e., the process flexibility configuration, 

must be decided at the beginning of the planning horizon. Unlike the FAM, in our 

dynamic allocation model (DAM) the capacity allocation decisions can adapt to the 

demand in each period, i.e., the firm has operational flexibility not present in the model 

of the previous section. DAM is a multistage stochastic program with binary first stage 

decision variables representing product-to-line assignments. Each of the subsequent 

stages is constrained by these first stage binary decisions, and optimizes over continuous 

decision variables capturing period-by-period capacity allocation decisions and 

backlogged demand. The model is summarized below with the following additional 

notation. 

Additional Notation: 
t
ib = backlogged demand for family i in period t 
t
ijy = capacity of line j allocated to produce family i in period t 

ibi ∀≡ 00  
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Throughout this section, we assume that td~ , t = 1,…,T are independent and

identically distributed random vectors. The independence assumption is key to our 

approach but the identically-distributed assumption can be easily relaxed. 

 Dynamic Allocation Model (DAM): 

)~,,(min 101
~

1 1

*
1 dbxhExaz

d
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            (2.9b) 

where .01 ≡+Th  

In the DAM, the process flexibility configuration is selected via x in (2.8) to 

minimize the cost of that configuration plus the expected operations cost to the planning 

horizon. That operations cost is captured in the recursion specified by (2.9), which takes x 

as input, and makes the allocation and resulting backlogging decisions in each time 

period, t = 1,…,T. When selecting x the demand process T
t

td 1}~{ =  is known only through

its distribution. When deciding ty and tb in period t, we know the current period’s 

demand realization, td~ , demand backlog from the previous period, 1−tb  and the

distribution governing the future demand process, }.~,...,~{ 1 Tt dd +  So, the timing of when
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we make the capacity allocation decisions, ty , and when we observe the random demand 

differs from FAM; we have greater operational flexibility here. Beyond this important 

difference, the structural form of the constraints in (2.9b) is the same as that in the FAM. 

Multistage stochastic programs, such as the one in (2.8)-(2.9) represent significant 

computational challenges, even when the demands in each period are independent. When 

the demands have a continuous distribution, as we will assume in our computational 

study in the next section, model (2.8)-(2.9) is intractable. Even if td~  has a finite number

of realizations in each time period, the size of the scenario tree grows exponentially with 

the number of time periods, and hence the model quickly becomes intractable. The fact 

that DAM has binary first stage decision variables adds further computational challenges. 

When an exact solution of a multistage stochastic program is not computationally 

viable, we turn to approximations. If td~  has a continuous distribution then we could

replace it with a manageable number of realizations in each time period. There are 

multiple ways to generate such discrete approximations, and we will do so using Monte 

Carlo sampling. In the literature, Monte Carlo schemes for stochastic programming can 

be classified as either being “internal” or “external”. In the latter, one replaces 

expectations with, e.g., sample means based on i.i.d. observations and then uses a 

“standard” algorithm to solve the resulting approximating problem. Here, the sampling is 

external to the algorithm. In an internal sampling scheme, an algorithm for deterministic 

optimization is adapted to the stochastic setting replacing evaluations and gradients by 

sampling-based estimators. Here, the sampling is carried out with new, and often 

independent, observations drawn at each iteration of the algorithm. 

Higle and Sen (1991) develop an internal sampling algorithm for two-stage 

stochastic linear programs that is an adaptation of the L-Shaped decomposition method of 

van Slyke and Wets (1969). In the multistage setting, the internal sampling algorithms of 
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Pereira and Pinto (1991), Chen and Powell (1999), Linowsky and Philpott (2005) and 

Donohue and Birge (2006) are adaptations of nested L-shaped decomposition (Birge 

1985). They are designed for multistage stochastic linear programs with inter-stage 

independence and a modest number of realizations in each stage.  

The requirement of having a modest number of realizations in each stage 

precludes direct application of the multistage algorithms discussed above to our DAM. 

So, we proceed in this section in four steps as follows: First we construct what we call an 

empirical scenario tree by replacing the true demand distribution at each stage by an 

empirical distribution constructed using Monte Carlo sampling. We call the dynamic 

allocation problem defined on this empirical tree EDAM. We construct the empirical tree 

in Section 2.4.1 so that EDAM is amenable to be solved using the multistage internal-

sampling based algorithms we point to in the previous paragraph.  Second, in Section 

2.4.2 we extend the sampling-based algorithm of Pereira and Pinto (1991) to solve 

EDAM. We could also extend the other algorithms mentioned above but for simplicity 

we only consider the algorithm of Pereira and Pinto.  Their algorithm requires extension 

because in addition to the standard staircase structure in which backlogged inventory is 

carried between adjacent time periods we also have binary first stage decisions, 

governing the process flexibility configuration, that are carried to all of the periods to the 

time horizon. This requires that we construct a non-standard cut, which we describe in 

detail. Third, a solution to a multistage stochastic program is a policy, and in Section 

2.4.3 we describe how we can construct a feasible policy for DAM using the cuts 

generated in solving EDAM. In the forth and final step, we seek to establish whether our 

feasible policy is near-optimal. To do so, we first describe how to estimate the policy’s 

expected cost in Section 2.4.4. Then, in Section 2.4.5 we show how to construct a 

confidence interval on the policy’s optimality gap using a lower bound estimator again 
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formed using EDAM. The solution validation ideas we use rely on Chiralaksanakul and 

Morton (2003), but have not been previously extended to problems with integer design 

decisions or decisions that directly affect all the time periods. 

2.4.1. Empirical Scenario Tree Construction 

In order to generate a sample scenario tree, we generate a set (indexed by S) of 

i.i.d. observations of the demand Skd k ∈,~ ,1 , in period 1. We will then use this same set

of observations to represent the realizations in each time period t. So, the first period 

sampled observations are Skd k ∈,~ ,1 . And, in period 2, each of these realizations will

have Skdd kk ∈= ,~~ ,1,2 , as its descendent nodes, etc. In this way, our empirical scenario

tree, like its “true” counterpart, exhibits inter-stage independence with identically 

distributed demand in each period. 

If the true demand had 1 2, ,..., Td d d independent but not identically distributed 

then in period t = 2 we would draw 2, , ,kd k S∈ and these |S| observations would form the 

descendent nodes of all 1, ,kd k S∈ . Repeating in this way the empirical scenario tree 

would, like the original, exhibit inter-stage independence. 

Hence, the dynamic allocation model defined on an empirical scenario tree 

(EDAM) takes the following form after each expectation is replaced with the 

corresponding sample mean. 

(EDAM) 
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                              s.t.  .),~,(),( ,1 SkdbYby ktttt ∈∀∈ −  

where .0ˆ 1 ≡+Th  

Solving EDAM is of central importance in generating near optimal polices for 

DAM. Next, we present a method using internal sampling to provide near optimal 

solutions to EDAM with reasonable effort. 

2.4.2. An Algorithm to Solve EDAM  

In this section, we develop a multistage nested decomposition algorithm to solve 

EDAM. Our algorithm is based on the idea of sequentially approximating the expected 

cost-to-go function in each stage with a piecewise linear function, similar to what we 

described in Section 2.3. Hence, at each stage one may use the approximate cost-to-go 

function to simply make the x and ty  decisions. Further, we note that due to the presence 

of first-stage binary assignment decisions which feed all the subsequent periods’ 

problem, EDAM is significantly harder to solve then a standard multistage stochastic 

linear program. See Birge and Louveaux (1997) for a detailed review of multistage 

stochastic programming models and algorithms.  

Here we present an algorithm extending that of Pereira and Pinto (1991) to handle 

binary first stage decisions which feed all the subsequent periods. First, the algorithm 

decomposes EDAM into a subproblem for each time period, including what we label t = 

0, where x is selected. Then, the algorithm iteratively applies forward and backward 

phases. During a single forward pass, a demand realization rtd ,~  is drawn from the sample 

set S and the stage t subproblem is solved, using the current piecewise linear 

approximation of the cost-to-go function. In the first iteration this subproblem is solved 

myopically but as the algorithm proceeds the piecewise linear function better 

approximates the sample-mean functions in (2.10) and (2.11). Solving the subproblems 

leads to a backlog demand, rtb , , being passed to stage t+1, where an independent 
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realization rtd ,1~ +  is drawn from S, until we reach the final period T. Hence, during the

forward phase the multistage problem is solved along a given sample path of demand, 

knowing only the approximate cost-to-go function, and not the future period demands, at 

each period. 

During the backward phase of the algorithm, given rTb ,1−  the stage T subproblem 

is first solved for all Sd rT ∈,~ and an optimality cut is passed to stage T-1. Next, given
rTb ,2−  the stage T-1 subproblem is solved for all Sd rT ∈− ,1~  and an optimality cut, i.e., a

first-order Taylor approximation, is passed to stage T-2. This backward pass continues 

until a cut is passed to stage t = 1 and finally to t = 0. The cuts accumulated in each stage 

represent a piecewise outer linearization of the cost-to-go function at that stage. Hence in 

each iteration of the algorithm, assignment decisions, x, are selected to minimize the 

objective (2.10) where the cost-to-go function is replaced by a piecewise linear 

approximation. As we iterate, the approximating functions become more precise and 

hence the assignment and allocation policies improve.  

Upon termination, the feasible policy obtained by the algorithm is evaluated by 

drawing independent demand samples from set S to provide an upper bound estimate. 

The details of the algorithm are given below. We will compactly denote inner products, 

like the first term in the objective function of (2.8), via ax. 

Solution Algorithm for EDAM: 

See Appendix A for the notation and the details of cut calculations, i.e., how to 

compute the cut coefficients , ,( , )t l t lμ β  and ,t lα . These are the cut gradient terms for x 

and tb  in period t, along with the cut intercept term in period t, respectively. They form 

the analogy of constraint (2.7) for the multistage setting.    
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Forward Pass: 
Repeat for each replication r = 1,…,R 

Repeat for each period t = 0,…,T-1 
If 0=t , 

Solve: 
1

, 1
min θ

θ
+ax

x
 

 s.t.    ,1,...,1,0,01 −=≥+ rlx ll αμθ
NMx ×∈ }1,0{

for rrx ,1ˆ,ˆ θ .  
If 0>t ,

Sample a demand vector rtd ,~  from sample set S.
Solve:  

1

,, 1
min ++

+

tt

by
sb

ttt
θ

θ

   s.t.    1,...,1ˆ,,,1 −=+≥++ rlxb rltlttltt μαβθ  

)~,ˆ,ˆ(),( ,,1 rtrtrtt dbxYby −∈

for )ˆ,ˆ( ,, rtrt by
(For t=T, the cut constraints and 1+Tθ are absent) 

Backward Recursion: 
Repeat for t = T, T-1,…,1 

Repeat for each scenario Sk ∈
Solve: 

1

,, 1
min ++

+

tt

by
sb

ttt
θ

θ

   s.t.    1,...,1ˆ,,,1 −=+≥++ rlxb rltlttltt μαβθ  
           1, ,ˆˆ( , ) ( , , )t t r t r t ry b Y x b d−∈  
 Store the optimal dual multipliers.  

Calculate the cut gradient and the intercept, and add the following cut to 
period   t-1: 

rrtrttrtt xb ˆ,1,11,1 −−−− +≥+ μαβθ  if t > 1, 
rr x ,0,01 αμθ ≥+ otherwise. 

Calculate lower bound for replication r: 
rr

r xaLB ,1ˆˆ θ+= ,  
            Let r = r+1, and repeat for a new forward run. 

Upper Bound Estimation: 
             Repeat for each r = 1,…, R′   

Repeat for each period t = 1,…,T 

Stage 0 
subproblem 

Stage t 
subproblem 
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Sample a demand vector rtd ,~  from sample set S.
1

,, 1
min ++

+

tt

by
sb

ttt
θ

θ

   s.t.    Rlxb Rltlttltt ,...,1ˆ,,,1 =+≥++ μαβθ  
)~,ˆ,ˆ(),( ,,1 rtrtRtt dbxYby −∈

   for )ˆ,ˆ( ,, rtrt by  

Calculate the upper bound estimator ∑∑
′

= =′
+=

R

r

T

t

rtR bs
R

xaUB
1 1

,
~ ˆ1ˆ

The algorithm we have just specified approximately solves EDAM. When the 

algorithm terminates the gap between LBR and the upper bound estimator, 
~

UB , provides 

a probabilistic measure of the optimality of the identified policy for EDAM. For our 

purposes, it is not necessary to solve EDAM exactly, since EDAM is already an 

approximation of DAM. In practice, the selection of R, i.e., the termination condition of 

the algorithm, is decided by numerical experimentation. R may be increased if the gap 

between the lower bound and the upper bound estimate is not sufficiently close. The 

parameter R′  used for estimating the cost of the policy in EDAM is typically selected 

with R′>R because we can afford to run more sample forward passes in this phase then 

combined backward and forward passes, because of the more expensive backward 

recursion.  

The output of the algorithm is a policy for EDAM. Specifically, at the end of the 

algorithm, the process flexibility configuration is given by the solution x to the stage 0 

subproblem. Note that the subproblems replace the exact cost-to-go function with a set of 

linear cuts that have accumulated in the course of the algorithm. And, for the allocation 

policy, we first solve the stage 1 subproblem with its cuts, given x and 1~d  to obtain y1

and b1 (note that when doing so Tdd ~,...,~2  need not be sampled yet). Next, we solve the

stage 2 subproblem with its cuts, given x, b1 and 2~d , etc., until we finally solve the stage
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T subproblem for yT. A lower bound on ẑ , the optimal value of EDAM, is given by LBr 

because the cuts form an outer linearization of the cost-to-go functions determined in 

EDAM. 

As indicated, the cuts accumulated during the backward passes of the algorithm 

are used to define a policy for EDAM. In Section 2.4.3, we show how these same cuts 

can similarly be used to construct a near optimal policy for the original problem DAM. 

And, the final lower bound, RLB , is used in Section 2.4.5 to generate a probabilistic lower 

bound for the true optimal value of the DAM.  

2.4.3. Near Optimal Policy Generation for DAM 

In this section, we present a procedure for generating a near optimal feasible 

policy for DAM. For this purpose, we first generate an empirical scenario tree and the 

associated EDAM. The approximate model (EDAM) is then solved with the algorithm 

given in Section 2.4.2. As we have described, when the algorithm terminates, the 

subproblems at each stage t contain a set of cuts generated during the backward passes of 

the algorithm. Since these cuts approximate the cost-to-go functions of EDAM, they may 

also be used to approximate the cost-to-go functions of DAM. Hence, they define a 

feasible policy for the actual model, DAM as well. 

In particular, we use the following optimization models to generate a good 

feasible policy for DAM: 



www.manaraa.com

31

For t = 0:   
1

, 1
min θ

θ
+ax

x

s.t.   ,,...,1,0,01 Rlx ll =≥+ αμθ   
.}1,0{ NMx ×∈  

For t = 1,…,T:   
1

,, 1
min ++

+

tt

by
sb

ttt
θ

θ

    s.t.    ,,...,1,,,1 Rlxb ltlttltt =+≥++ μαβθ
),~,,(),( 1 tttt dbxYby −∈

  (For t=T, the cut constraints and 1+Tθ are absent) 

Figure 2.3: Models for Generating a Feasible Policy for DAM 

Note that β , α  and μ  contain the cut coefficients and R is the total number of 

cuts obtained while solving EDAM with the method of Section 2.4.2. 

Our policy determines decisions ),( tt by  to be made at each period t = 1,…,T, 

(and decision x at period t = 0),  by solving the models in Figure 2.3 for a given period t 

and state ),ˆ( 1 tt db − . The overall procedure for generating a near optimal feasible policy is 

summarized below: 

Step 1: Construct an empirical scenario tree and the associated  
empirical model, EDAM, as explained in Section 2.4.1. 

Step 2: Solve EDAM with the algorithm of Section 2.4.2. 

Step 3: When the algorithm terminates, store the generated cuts at  
each stage of the problem. 

Step 4: Using the cuts from Step 3, construct and solve the sequence of 
optimization problems in Figure 2.3 to find a feasible policy. 

         Figure 2.4: Feasible Policy Generation Procedure for DAM 
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2.4.4. Policy Cost Estimation (Upper Bound Estimation) 

Once a feasible policy is identified for DAM, the next step is to evaluate its cost 

to obtain an upper bound on the optimal value of DAM, *z . In particular, for a given 

demand sample path i, )~,...,~( ,,1 iTi dd , our policy generates a stream of feasible solutions,

x̂ , )~(ˆ ,11 idb ,…, )~(ˆ ,iTT db  for DAM and, the cost of the policy for that sample path is

given by: ∑
=

+==
T

t

ittiTii dbsxaddUU
1

,,,1 )~(ˆˆ)~,...,~( . Since the identified policy is not

necessarily optimal, the expected cost of the policy exceeds DAM’s optimal value, i.e., 
*1 )~,...,~(~ zddEUUE T ≥= .

Next, to obtain a point estimate of UE ~ , we generate η  i.i.d. demand sample

paths, )~,...,~( ,,1 iTi dd , i = 1,…,η  and evaluate the cost of the policy, for each sample path.

Then, an approximate one-sided )%1(100 α−  confidence interval for UE ~  is

]/,( ηαη uszU +−∞ , where ∑
=

=
η

η η 1

1
i

iUU  and 2

1

2 )(
1

1
η

η

η
UUs

i

i
u ∑

=

−
−

= . Here, αz  is the 

(1-α)-level quantile for a standard normal. In general, we may use t-distribution quantiles 

but the values of η  we use will be sufficiently large so that the difference is negligible. 

2.4.5. Lower Bound Estimation 

This section explains how to develop a probabilistic lower bound for *z , the 

optimal value of DAM. Our goal is to combine this bound with the one in Section 2.4.4 

and to develop a confidence interval for the optimality gap of the policy generated in 

Section 2.4.3. Our lower bound estimator is based on the following proposition. 

Proposition 2.4.1: Let L~  denote the final lower bound generated by the algorithm of

Section 2.4.2 for the optimal value of an EDAM. Then, LEz ~* ≥ .

Proof:  Let ẑ  be the optimal value of EDAM for a particular scenario tree Γ . 

From Theorem 2 of Chiralaksanakul and Morton (2003), zEz ˆ* ≥ . Since Lz ~ˆ ≥ , we

conclude that LEzEz ~ˆ* ≥≥ .
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Next, we develop a point estimate of LE~ to establish a lower bound for *z . Hence,

as in the previous section, we generate multiple replicates of L~ . In particular, we

construct ν  i.i.d. sample scenario trees, νΓΓ ,...,1 , and the associated EDAMs as 

explained in Section 2.4.1. Then, we solve these problems with the method of Section 

2.4.2 to obtain the lower bound estimators νLL ,...,1 . 

Then, by the standard central limit theorem for i.i.d. random variables, an 

approximate one-sided 100(1-α )% confidence interval for *z  (also for LE~ ) is given by

),/[ ∞+− ναν lszL , where ∑
=

=
ν

ν ν 1

1
i

iLL and 2

1

2 )(
1

1
ν

ν

ν
LLs

i

i
l ∑

=

−
−

= . Finally, by 

combining this confidence interval with the one in Section 2.4.4, using the Boole-

Bonferroni inequality, we obtain a confidence interval for the optimality gap of the 

feasible policy, i.e., for *~ zUE − . Specifically, an approximate 100(1-2α )% confidence

interval for *~ zUE −  is given by ]//)(,0[ νη αανη lu szszLU ++− + .

2. 5. COMPUTATIONAL RESULTS AND ANALYSIS 

The purpose of the computational study in this section is two-fold. First, in 

Section 2.5.1, we investigate the value of operational flexibility by comparing and 

analyzing the expected performance of the dynamic and fixed allocation models under 

different real-life settings. Then, in Section 2.5.2, under dynamic operating policies, we 

specifically focus on the value of process flexibility in a multi-period decision 

environment, ignoring the cost of the assignments. Further, the computational results 

show that our algorithms are very effective to solve real-sized problems. Below for 

simplicity, we assume that production of a unit of any product requires the same amount 
of capacity and the production lines are identical, i.e., 1 ,ije i j= ∀  and jK K j= ∀ , for 

the computational analyses. 
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2.5.1. Value of Operational Flexibility: Comparing DAM and FAM  

In this section, we numerically compare and analyze FAM and DAM developed 

in Sections 2.3 and 2.4, respectively. In our experimental design we use ),(~~ 2
iii Nd σμ .

We consider two factors that scale: (i) the variability of the demand ( β ), and (ii) its 

mean, ( ρ ). To scale the mean we use the ratio of mean-demand to capacity, i.e., 

KdE
M

i
i∑

=

=
1

~ρ . Let ),(~~ ρβii dd = . Table 2.2 contains =iBase,μ E( id~ ) and

=2
,iBaseσ Var )~( id , i.e., the mean and the variance of ),(~ ρβid , for 1== ρβ . More 

generally, iBaseidE ,),(~ ρμρβ =  and Var iBaseid ,
22),(~ βσρρβ = . In this way, the coefficient

of variation of  ),(~ ρβid  is constant as we scale ρ  and grows in β .  

We conjecture that these two factors should have a significant impact on the 

performance of the policies under investigation. More specifically, we consider three 

mean-demand to capacity ratios ( ρ  = 0.933, 1 and 1.067), as well as three levels of 

demand variability ( β  = 1, 3 and 5). The demand data in this study is generated to 

simulate the real situation at the firm. In particular, the product families in Table 2.2 with 

higher mean demand have lower coefficient of variation. 

Below, we summarize computational results for a problem with M = 6 families, N 

= 3 lines and T = 5 production periods. In practice, the firm has 10-15 product families 

and 6 production lines. However, from the manufacturing point of view similar product 

families that share a significant number of components are aggregated. Moreover, some 

set of production lines are also dedicated for producing certain product families. Hence 

from a practical point of view it is sufficient to consider a 6-product 3-line problem.  

For ease of analysis, we assumed that backlogging cost for all families is si = $1 

while the assignment cost for any line-product pair is aij = $10 (similar results are 

obtained for different combinations of backlog and setup costs). A brief review of 

experimental settings is provided in Tables 2.1-2.2.  
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M N K T ρ  β  
6 3 100 5 {0.933, 1, 1.067} {1, 3, 5} 

Table 2.1: General Experimental Settings 

Base Mean 
( Baseμ ) 

Base Variance 
( 2

Baseσ ) 
Family 1 5 0.5 
Family 2 35 22 
Family 3 40 26 
Family 4 45 31 
Family 5 85 97 
Family 6 90 102 

Total 300

Table 2.2: Base Demand Data for the Test Problem ( 1,1 == βρ ) 

The sample setting in Tables 2.1-2.2 is solved (for each experimental setting) 

under both FAM and DAM with the algorithms explained in Sections 2.3 and 2.4, 

respectively. Both of the solution methods are implemented in C++ using Concert 

Technology and CPLEX callable library on a Dell Precision 530 Workstation with Intel 

Xeon 1.8GHz processor and 1GB of RAM. From a computational point of view, under 

our experimental settings, it takes around 7 minutes to solve a problem instance under 

FAM. Identifying a near optimal policy for a problem instance under DAM takes around 

20 minutes while forming a confidence interval on the optimality gap, for the identified 

policy, takes 6-7 hours. (See Appendix B for the computational parameters used for the 

solution method of DAM.) 

The optimal operating costs obtained under FAM are presented in Table 2.3. 

These are estimates obtained with a sample size of R=106. The associated standard 

deviations are about 0.03% of the sample mean estimates. In our example, the operating 

cost increases with demand variability and the ratio of mean-demand to capacity. In 
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addition, the introduction of variability (to a deterministic system) has the highest impact 

on the operating costs when ρ =1. Intuitively, when we have plenty of capacity, demand 

variability can be buffered with capacity up to some extent, similarly when we have the 

capacity well below the demand then the variability will not affect the expected loss too 

much, since the capacity is already fully utilized. 

βρ /  
Deterministic 
( 0=β ) 

Low Variability 
( 1=β ) 

Moderate Variability 
( 3=β ) 

High Variability 
( 5=β ) 

0.933 70 126.45 214.20 281.33
1 80 238.95 353.58 431.98

1.067 370 443.81 547.68  626.33 

Table 2.3: Optimal Operating Cost under Fixed Allocation Model (zf) 

The results for the dynamic allocation model are summarized in the next four 

tables. In Table 2.4, we provide the operating cost estimates of the near optimal policy 

identified by the solution method of Section 2.4.3. Then, in Table 2.5, in order to quantify 

the quality of the identified policy, we provide the lower bound estimates on the true 

optimal value of DAM as explained in Section 2.4.5. Finally, we provide the optimality 

gap estimates of the identified policies in Table 2.6. (In Table 2.6, %Gap is calculated by 

dividing the length of the confidence interval by the mean upper bound estimate, U .) 

In the worst case, the optimality gap of the identified policy is around 5% of the 

estimated cost and for low and medium variability cases the gap is less than 2.5%. Hence, 

we conclude that, for our example, the approach presented in Section 2.4 generates near 

optimal policies for DAM. In addition, since our gap generation mechanism is based on 

sampling, it is natural to observe that the algorithm performance slightly degrades as the 

variability of demand grows. 
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βρ /   
Deterministic 

)0( =β
Low Variability 

)1( =β  
Moderate Variability  

)3( =β  
High Variability 

)5( =β  

ηU us ηU us ηU us ηU us
0.933 70 0 84.48 0.07 107.59 0.29 132.16 0.49 

1 80 0 153.91 0.47 207.41 0.82 248.25 1.06 

1.067 370 0 386.88 0.81 419.46 1.34 453.74 1.62 

Table 2.4: Cost of the Identified Feasible Policy for DAM ( usU ,η ) 

βρ /   
Deterministic 

)0( =β
Low Variability 

)1( =β  
Moderate Variability 

)3( =β  
High Variability 

)5( =β  

νL ls νL ls νL ls νL ls
0.933 70 0 84.56 0.32 107.37 0.92 128.91 1.44 

1 80 0 153.90 0.85 207.57 1.50 245.17 3.84 

1.067 370 0 386.67 0.60 420.07 1.20 445.51 1.88 

Table 2.5: Lower Bound for the Optimal Operating Cost of DAM ( lsL ,ν ) 

βρ /   
Deterministic 
( 0=β ) 

Low Variability 
( 1=β ) 

Moderate Variability 
( 3=β ) 

High Variability 
( 5=β ) 

95%CI % Gap 95%CI % Gap 95%CI % Gap 95%CI % Gap 
0.933 N/A N/A [0, 0.76] 0.90 [0, 2.60] 2.42 [0, 7.02] 5.31 

1 N/A N/A [0, 2.61] 1.69 [0, 4.54] 2.19 [0,12.70] 5.12 

1.067 N/A N/A [0, 2.99] 0.77 [0, 4.97] 1.18 [0,15.08] 3.32 

Table 2.6: Approximate 95% Confidence Intervals for the Optimality Gap of the Feasible 
Policy 

Comparing the results in Table 2.3 and Table 2.4, it is clear that operational 

flexibility (i.e., using a dynamic allocation policy) significantly reduces the negative 

impact of variability on the operating cost. For example, under the low demand setting, 

moving from a deterministic system to a low variability system, the operating cost under 

DAM increases from $70 to $84.48 whereas, under FAM, it increases from $70 to 

$126.45. 
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In particular, it becomes more beneficial to use DAM instead of FAM as the 

system becomes more variable and the mean-demand to capacity ratio approaches one. 

The maximum difference is observed when 5=β and 1=ρ . Table 2.7 summarizes the 

absolute benefits of using DAM over FAM under our experimental settings. 

βρ /  
Deterministic 
( 0=β ) 

Low Variability 
( 1=β ) 

Moderate Variability 
( 3=β ) 

High Variability 
( 5=β ) 

0.933 0 41.97 106.61 149.17
1 0 85.04 146.17 183.73

1.067 0 56.93 128.22 172.59

Table 2.7: Expected Absolute Benefits of using DAM over FAM (zf -U ) 

Intuitively, if the mean demand is well above the capacity, then operational 

flexibility (i.e., using DAM instead of FAM) does not provide much benefit since the 

system capacity is already fully utilized and dynamically changing the allocations does 

not help to decrease the expected backlog. Similarly, when the mean demand is well 

below the capacity, then again operational flexibility is not very beneficial. On the other 

hand, if the capacity is well-balanced with respect to the demand, then there is significant 

opportunity for decreasing the expected backlog by revising the allocations periodically. 

In addition, under all demand levels, the absolute benefits of operational flexibility are 

increasing with the variability of the system. 

In Table 2.8, we provide the expected percentage benefits of using DAM over 

FAM. The effect of variability on the percentage and absolute benefits is similar: the 

percentage benefits also increase with the variability of the system but, from moderate to 

high variability the increase is not very significant. The impact of capacity availability is 

slightly different in this case, i.e., the percentage benefits under 933.0=ρ  and 1=ρ  are 

close to each other and moreover, for moderate and high variability cases percentage 

benefits under 933.0=ρ  are higher. This result may be interpreted by analogy with a 
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queueing system with a relatively high traffic intensity of 933.0=ρ . In this setting, DAM 

has opportunities to adaptively change allocations to decrease the backlog. In addition, 

since for 933.0=ρ  we have some slack capacity, DAM is more efficient in decreasing 

backlog than the 1=ρ  case. However, as explained in the previous paragraph, as ρ  

approaches zero, absolute and percentage difference in the performance of DAM and 

FAM shirks to zero. 

βρ /  
Deterministic 
( 0=β ) 

Low Variability 
( 1=β ) 

Moderate Variability 
( 3=β ) 

High Variability 
( 5=β ) 

0.933 0 33.19 49.77 53.02
1 0 35.59 41.34 42.53

1.067 0 12.83 23.41 27.56

Table 2.8: Expected Percentage Benefits of using DAM over FAM (zf -U ) / zf 

From a computational point of view, under FAM, it is possible to solve much 

larger problem instances, e.g., problems up to 20 families and 10 production lines, in an 

effective manner. Under DAM it is also possible to quickly identify good feasible 

solutions for these problems. However, constructing a confidence interval for the 

optimality gap (under DAM) becomes computationally challenging as the problem size 

grows large.  

On the other hand, given a certain assignment decision, i.e., with the x-decision 

pre-specified, DAM can quickly identify a near optimal allocation policy. Therefore, 

when solving large problems under DAM, using the assignment decision identified from 

the FAM may be a good heuristic approach. Another approach can involve aggregating 

the large problem to a manageable size and then using the optimal assignment solution of 

this approximate problem in the actual model. 
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2.5.2. Value of Process Flexibility 

In the previous sections, for a given operating policy, we have concentrated on the 

joint optimization of process flexibility and capacity allocation decisions, by trading off 

the cost and benefits of process flexibility in a multi-period decision framework. 

Nevertheless, in practice, a firm may already have an incumbent process flexibility 

configuration (which may be difficult to fully reconfigure) and may be interested in 

improving over this current scheme by adding new links to it. Hence, the firm first needs 

to assess the value of its current flexibility configuration since the additional value of the 

new links will be traded off with their costs.  

In this section, we specifically investigate the value of process flexibility, under 

different operating policies. In a single period model, it has been shown that a little 

process flexibility, namely a partial assignment scheme configured as a “chain”, achieves 

almost all the benefits of full process flexibility (see Jordan and Graves 1995). Ignoring 

the cost of assignments in our case, allows us to extend the results of Jordan and Graves 

(1995) to a multi-period decision framework in which the firm must also decide how to 

allocate capacity to demand over time, i.e., the allocation (operating) policies.  

First, we consider an optimal dynamic allocation policy, where the firm decides 

allocations to minimize its expected backlogging cost over the full planning horizon (as 

in DAM). In this case, we solve the DAM for a given flexibility configuration to find the 

optimal allocations. Next, we consider a myopic dynamic allocation policy, where the 

firm minimizes its backlogging cost myopically in each period. We label this latter policy 

MDAM.  In this case, the allocation policy is not forward-looking, but the firm still has 

full operational flexibility when deciding capacity allocations over time. Myopic 

allocation policies are quite common in practice, since they are easy to identify, 

understand and implement. 



www.manaraa.com

41

We start with an example with 6 families, 6 production lines (each with 100 units 

of capacity) and 10 time periods. Demand (again, normally distributed) and backlogging 

cost information for each family is provided in Table 2.9. 

Mean Variance Unit backlogging 
cost ($) 

Family 1 30 80 1.01 
Family 2 80 500 1.01 
Family 3 80 550 1.01 
Family 4 150 1000 1.005 
Family 5 110 600 1 
Family 6 150 1200 1 

Total 600

Table 2.9: Demand and Cost Data for the Test Problem 

Next, for this example, we compare the value of the partial-flexibility 

configuration shown in Figure 2.5.a to the full process flexibility case given in Figure 

2.5.b. Here, the comparison is with respect to expected backlogging cost. In practice, 

Figure 2.5.a may represent the current operating configuration of the firm, or it may be 

implied by the cost of assignments. The corresponding results are summarized in Table 

2.10.  
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  Figure 2.5.a: Partial Process Flexibility Figure 2.5.b: Full Process Flexibility 

Backlogging Cost Relative Difference 
Allocation Policy/Process Flexibility Partial-Flex Case Full-Flex Case (Partial-Full)/Full 

Optimal Allocation (DAM) 1281.21 834.56 53.52% 
Myopic Allocation (MDAM) 1523.06 834.56 82.50% 
(MDAM-DAM)/MDAM 15.88% 0.00%

Table 2.10: Value of Flexibility Configurations in Figure 2.5.a and 2.5.b under DAM and 
MDAM 

Table 2.10 shows that under the optimal dynamic allocation policy, the expected 

backlogging cost of the partial configuration is 53.52% higher than the cost of the full 

flexibility configuration. However, this difference in backlogging cost grows up to 

82.5% under the myopic dynamic allocation policy. Hence, the value of the partial 

configuration is significantly reduced under the myopic allocation case. Indeed, the 

expected backlogging cost for the partial configuration is 15.88% higher under the 

MDAM compared to DAM.  
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The intuition for the results in Table 2.10 is as follows. Since the myopic 

allocation policy minimizes the immediate cost in every period, when backlogging, 

families are prioritized according to their unit backlogging costs. Hence, in this particular 

example, the policy first tries to backlog F5 and F6, then F4 and then considers the other 

families. However, the assignment configuration in Figure 2.5.a implies that the total 

capacity accessible to produce F4, F5 and F6 (the lower group) is 400 units while their 

total mean demand is 410. On the other hand, for the remaining families, F1, F2 and F3 

(the upper group), the total accessible capacity is 300 units while their expected demand 

is only 190 units. Therefore, backlogging the lower group, when it is also possible to 

backlog the upper group, creates an increased risk of backlogging in the future since such 

a policy further distorts the capacity and demand balance in the system. Hence, the 

myopic solution deteriorates over time.  

The specific backlogging cost scheme in Table 2.10 could be driving the 

difference between myopic and optimal policies, since the cost structure is biased in such 

a way to backlog the families with restricted capacity. To investigate the impact of the 

cost structure, we repeat the example with a reversed backlogging cost scheme, i.e., s1 = 

s2 = s3 =1, s4 =1.005, s5 =1.01 and  s6=1.01.  In this case, priority is given to families F1, 

F2 and F3 which have access to relatively more capacity. However, we still observe a 

7.2% gap between the value of the partial configuration under DAM and MDAM. This is 

because, even though the upper group has more capacity at the beginning of the planning 

horizon, they become more restricted as backlog accumulates over time.  

Moreover, even under an identical backlogging cost scheme (where 

1, 1,...,6is i= = ), the percentage gap between the value of partial configuration under 

DAM and MDAM is still significant at 6.1%. Indeed, the optimal policy identified by 

DAM is a forward-looking policy, which dynamically prioritizes families to backlog by 
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taking the current backlog levels, backlogging cost scheme and the future demand into 

account. Hence, a myopic rule may fail to perform well. 

In addition, we show that this performance gap under DAM and MDAM still 

exists even for very efficient chain flexibility configurations. Below, we investigate the 

value of the partial flexibility scheme, given in Figure 2.5.c, which is configured as a 

chain that achieves almost all the benefits of the full process flexibility under DAM. In 

this second example, to eliminate the influence of the non-identical backlogging cost, we 

further assume that the backlogging cost is identical and equal to $1 for each family.  

Figure 2.5.c: Chain Process Flexibility 

Backlogging Cost Relative Difference 
Allocation Policy/Process Flexibility Chain-Flex Case Full-Flex Case (Chain-Full)/Full 

Optimal Allocation (DAM) 845.625 837.17 1.01% 
Myopic Allocation (MDAM) 873.169 837.17 4.30% 
(MDAM-DAM)/MDAM 3.15% 0.00% 

Table 2.11: Value of Flexibility Configurations in Figure 2.5.c and 2.5.b under DAM and 
MDAM 
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Table 2.11 shows that, under DAM the chaining configuration in Figure 2.5.c is 

very effective and its cost deviates from the full flexibility case by only 1%. However, 

the effectiveness of the chaining configuration decreases significantly under MDAM and 

its cost deviates from the full flexibility case by more than 4%. Hence, even if a chain is 

very efficient, with respect to full flexibility configuration under DAM, its efficiency may 

reduce significantly under MDAM. 

Next, we extend our computational results to investigate the impact of the number 

periods in the planning horizon. In Table 2.12 below, we analyze the effectiveness of the 

chaining configuration in Figure 2.5.c as the number of periods changes when the 

capacity is well balanced with demand. 

Results for 2-Period Problem 
Backlogging Cost Relative Difference 

Allocation Policy/Process Flexibility Chain-Flex Case Full-Flex Case (Chain-Full)/Full 
Optimal Allocation (DAM) 69.68 68.55 1.64% 
Myopic Allocation (MDAM) 70.27 68.55 2.52% 
(MDAM-DAM)/MDAM 0.85%  

Results for 8-Period Problem 
Backlogging Cost Relative Difference 

Allocation Policy/Process Flexibility Chain-Flex Case Full-Flex Case (Chain-Full)/Full 
Optimal Allocation (DAM) 592.85 586.47 1.09% 
Myopic Allocation (MDAM) 610.68 586.47 4.13% 
(MDAM-DAM)/MDAM 2.92% 

Results for 14-Period Problem 
Backlogging Cost Relative Difference 

Allocation Policy/Process Flexibility Chain-Flex Case Full-Flex Case (Chain-Full)/Full 
Optimal Allocation (DAM) 1435.47 1422.75 0.89% 
Myopic Allocation (MDAM) 1488.63 1422.75 4.63% 
(MDAM-DAM)/MDAM 3.57% 

Table 2.12: Value of Flexibility Configuration in Figure 2.5.c for T = 2, 8 and 14 

There are two important takeaways from Table 2.12. First, the effectiveness of the 

chaining configuration improves as the number of periods grows under DAM. In 

particular, the performance of the chaining configuration deviates from the full flexibility 
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performance by 1.64% for the 2-period problem, while this deviation falls to 0.89% for 

the 14-period case. This is because the system becomes more congested over time as the 

demand is backlogged, and the performance of the chaining and full-flexibility 

configurations converges to each other.  

Second, as the number of periods increases the effectiveness of the chaining 

configuration deteriorates under MDAM. This is due to the fact that it becomes more 

important to look forward when making allocation decisions in longer planning horizons. 

In particular, for a single period problem, a myopic allocation is optimal, but as the 

number of periods grows the sub-optimality of myopic decisions becomes more severe. 

On the other hand, the congestion argument mentioned above also applies here and 

eventually as the number periods keeps growing, the performance of the chaining and full 

flexibility configurations converge to each other under MDAM, as well. In our example, 

up to 14 periods, the first factor dominates and the performance gap increases with the 

number of periods (i.e., the gap increases from 2.52% for the 2-period problem to 4.63% 

for the 14-period problem). All the comparisons we make with respect to Tables 2.12 are 

statistically significant at the 1% level. 

As a result, we numerically show that the value of process flexibility depends on 

the allocation policy employed by the firm to allocate capacity as the demand is revealed. 

That is, a suboptimal allocation policy, specifically a myopic allocation of capacity to 

demand, may significantly reduce the value of a particular flexibility configuration and 

may increase the need for more process flexibility. Hence, in the production planning 

phase, a firm which uses a myopic allocation policy may require the adoption of more 

process flexibility to hedge against demand uncertainty.  
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2.6. DISCUSSION 

In this chapter, we addressed a challenging real life production and capacity 

management problem which, to the best of our knowledge, has not been addressed in the 

literature so far. The problem is motivated by a high-tech electronic device manufacturer 

which produces multiple product families on multiple flexible assembly lines over 

multiple time periods under demand uncertainty. While our motivation stems from the 

electronics industry, many of the same issues considered here extend to a wide range of 

make-to-order manufacturing environments.  

We specifically modeled and analyzed the value of process and operational 

flexibility, in a multi-period manufacturing environment with stochastic demand. 

Regarding the operational flexibility of the firm, we studied a fixed allocation model 

(FAM), a fully optimized dynamic allocation model (DAM) and a myopically optimized 

dynamic allocation model (MDAM). In the fixed allocation model, which closely 

represents the current practice in our firm, the capacity allocations and flexibility 

decisions are made at the beginning of the first period and are kept fixed throughout the 

planning horizon. We formulated the fixed allocation model as a single-stage stochastic 

program and developed a cutting plane algorithm to solve it. 

In the two dynamic allocation models, the firm may change the allocation 

decisions from period to period after observing the demand. DAM is formulated as a 

multistage stochastic program with binary first stage decision variables. In Section 2.4, 

we outlined a method to obtain near optimal policies for DAM and to generate bounds on 

the optimality gap for a given feasible solution. 

In contrast to FAM, DAM allows the company to utilize operational flexibility. 

Hence, a comparison of these two models provides the value of operational flexibility 

under the optimal choice of process flexibility. The computational results given in 
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Section 2.5.1, show that operational flexibility is most valuable when the demand 

variability is high and the mean-demand and capacity is well-balanced. Hence, a firm 

whose capacity is closely trimmed to the mean of its highly uncertain demand will have 

greater benefit from the dynamic allocation model. 

On the other hand, managing a dynamic allocation system could be more 

complicated than a fixed allocation system, due to the impact of reduced standardization 

and increased need for additional labor, material handling equipment and advanced 

information systems. Hence, the benefits of DAM should be traded off with the cost 

implications of operating a more complex system, before deciding to use either a fixed or 

dynamic allocation system in practice.  

Ignoring the cost of assignments, we also analyze the value of process flexibility 

under optimal and myopic dynamic operating policies. Our computational results show 

that the value of process flexibility may significantly depend on the operating policy 

employed by the firm to allocate capacity, in a multi-period production environment. In 

particular, we show that a flexibility configuration may be significantly over-valued 

under DAM compared to MDAM. That is, if a firm operates with a myopic allocation 

policy after the process flexibility decision, then more process flexibility is needed to 

achieve the same level of expected backlogging cost under MDAM. In other words, a 

firm which uses a myopic allocation policy may require the adoption of more process 

flexibility to hedge against demand uncertainty. 

Finally, the impact of the number of periods is also revealing. If the firm employs 

an optimal dynamic allocation policy, then the effectiveness of a chain flexibility 

configuration improves as the number of periods increases, since the system becomes 

more utilized over time. However, if a myopic operating policy is used, then the myopic 
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solutions become more and more distorted as the number of periods increases and hence, 

the effectiveness of the chain flexibility configuration decreases.  

Regarding our solution methods, we require demand to be independent across 

time when solving DAM, but it need not be identically distributed and we can handle 

inter-product dependencies.  

This is a reasonable assumption, for an MTO firm involved in mass customization 

facing an aggregate demand that comes from a large number of customers who act 

independently. The solution methodology developed for FAM in Section 2.3 also handles 

non-identical and correlated demand both across time and product families. It is also 

straightforward to extend our solution methods to work with non-identical production 

capacities.  

Our computational results suggest that our methods are effective for solving real-

sized problems. Decomposition methods in the two-stage setting have benefitted from the 

use of a trust region or a quadratic proximal term to speed convergence, and we could 

similarly benefit from using these in the multi-stage setting. Moreover, we have based 

our decomposition on the algorithm of Pereira and Pinto (1991) because of its (relative) 

simplicity to describe. Enhanced versions designed to reduce computational effort have 

more recently been developed by Chen and Powell (1999), Linowsky and Philpott (2005) 

and Donohue and Birge (2006), and we could also benefit from these enhancements.  

In the future, we plan to extend this research with a focus on the supply side of the 

problem. Like demand uncertainty, supply uncertainty also creates new motivations for a 

firm to be flexible. Hence, we intend to design multi-stage flexible supply chains which 

are robust to both demand and capacity fluctuations in a make-to-order production 

environment.  
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Chapter 3

Production, Process Investment and Survival of Debt Financed Startup 
Firms 

3.1. INTRODUCTION 

According to a study by U.S. Bureau of the Census, it is estimated that over 

700,000 startups are formed every year in the US (Acs and Armington 1998). However, 

only a small proportion of these startups are able to grow their revenues and become 

profitable, and even a smaller proportion of these firms can show continued growth and 

make initial public offerings (Acs and Armington 2003). Startup firms are endowed with 

unique characteristics regarding their asset structure, organization type and growth 

orientation (Gifford 2005), and their operational decisions are often restricted by debt and 

other financial considerations (Berger and Udell 2005).  In practice, most startups have 

very limited access to capital. Most of these firms take on debt and face immediate 

bankruptcy in case of a payback default. Hence, for startup managers it is necessary to 

generate adequate short-term cash flows by exploiting immediate business opportunities 

in order to keep up with the cash outflows and avoid bankruptcy.   

Further, startups are not merely focused on survival. They are also interested in 

long-term growth. Indeed, most startup firms are concerned with their ability to invest in 

research and development (R&D) to improve their products and services (Bhide 2000). 

While such investments may not generate immediate cash flows, they are likely to 

improve the future prospects of the firm. In general, under bankruptcy risk, long-term 

growth and short-term survival are two intimately linked concerns.  A key area of startup 

decision making, involving short term survival against long term growth, is the R&D 
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investment that is aimed at reducing the firm’s unit production cost. In this chapter, we 

investigate the optimal operating decisions of a startup under debt which can invest in 

production to exploit the current business opportunities and generate short-term cash 

flows, or, it can also have a strategy under which it may also invest in process 

improvement to secure future market share and long-term profits. 

We have conducted a series of interviews in order to understand the key 

considerations that affect process R&D investment decisions in startup settings. For 

example, Faradox is an Austin based startup which provides high energy density 

capacitors using its niche production process. Faradox views process development to 

reduce unit cost as a key competitive aspect of its business. During our interviews, the 

VP of business operations at Faradox stated that there was tremendous amount of on-

going research in the field of high energy density capacitors and, it was quite likely that 

new competitors might enter the market by developing new and possibly more efficient 

production processes with lower unit costs. He also acknowledged that while process 

R&D was a key element of long term survival of Faradox, it was very costly and its 

return was highly uncertain. Further, while making investment decisions, predicting 

consumer demand also imposes a serious challenge for this company since the market is 

evolving and the customer base is hard to analyze. Allied issues have also surfaced at 

other Austin startups, AccuWater, AxsTracker, Big Foot Networks etc. Managers at these 

firms indicated that their production and investment decisions are affected by risk created 

by cash flow and technology performance. These concerns are consistent with 

descriptions of startup decision making in the extant literature (Bhide 2000, Shane 2007).   

However, in the absence of a modeling framework, these managers are not able to 

assess their production and process improvement risks, and underlying tradeoffs, with 

precision. This has motivated our effort to formalize a class of factors that have been 
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central for startup companies while choosing their operating policies regarding 

production and process investment in the presence of survival considerations: 

uncertainties surrounding demand, technological performance and likely entry of 

competition. These factors form the core of our model, and we examine their impact on 

the selection of operating (production and process investment) policies and the survival 

chances of the startup. For ease of exposition, model specification and analysis are 

developed in two stages. In the first stage, we analyze a base case (BC) regarding our 

operating decisions under deterministic demand with a two-period model. BC provides 

benchmarks for more involved models. In the second stage of our analysis, we allow 

stochastic realization of demand. This is termed as the stochastic demand and survival 

constraint (SDSC) case. With stochastic demand, profits after the first period are not 

guaranteed and a probabilistic survival constraint comes into play. SDSC is amenable to 

closed form solutions under limited conditions. Hence, we explore the underlying 

tradeoff between expected profit and bankruptcy risk through a combination of analytical 

and numerical solutions. 

The contributions from our work are threefold. First, we specify a deterministic-

demand model for a debt financed startup firm as a base case, and characterize an optimal 

invest-all-or-nothing policy which derives the conditions for investment in process 

improvement in order to enhance long-term profits. Second, with demand uncertainty and 

the consequent probabilistic survival constraint, we find that such a startup responds to 

the bankruptcy risk by increasing the investment threshold, i.e., the firm looks for more 

favorable market conditions to invest. Indeed, while balancing the bankruptcy risk with 

future growth opportunities, the startup may either behave conservatively (aggressively) 

by investing and producing less (more) than the BC level. In effect, a probabilistic 

survival constraint induces the startup to produce so as to create an operational hedge 
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with respect to its process investment decision. Further, we offer a probabilistic survival 

measure that reflects the riskiness of the startup’s operating decisions under the threat of 

bankruptcy. Third, we explore the impact of the existence of process investment 

opportunities, immediate profitability of the firm and limited debt availability on the 

optimal operating decisions and the allied survival chances. In addition, we have circled 

back to some startup managers and sought their feedback on our findings. We discuss the 

managerial implications of these findings while we synthesize and discuss our results.  

The rest of the chapter is organized as follows. Section 3.2 provides a review of 

the related literature. In Section 3.3 we analyze the BC and characterize a closed form 

solution under deterministic demand. We extend our discussion to SDSC case in Section 

3.4. In Section 3.5 we discuss limited debt capacity. Section 3.6 addresses managerial 

implications, limitations and concludes the chapter. 

3.2. RELEVANT LITERATURE 

Here we briefly review the streams of literature that are closely related to our 

work: investment in process R&D, startup operations and financing, and the 

entrepreneurial decision-making.  

Investment in process R&D and allied cost reduction and capacity management 

decisions have long been key issues in the manufacturing technology management 

literature (De Groote 1988, Fine and Porteus 1989, Chand et al. 1996, Li and Rajagopalan 

1998, Carrillo and Gaimon 2000, 2004). In addition, a closely aligned literature explores 

the technology adoption decisions (McCardle 1985, Milgrom and Roberts 1990, Fine and 

Freund 1990, Gupta and Loulou 1998). R&D investment under technology uncertainty in 

a single firm setting (Balcer and Lippman 1984, Kornish, 1999) and in competitive 

settings (Mamer and McCardle 1987) usually yield an “all-or-nothing” type of policy: 

adopt the current best technology if the gap between current and state-of-the-art 
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technology exceeds a certain threshold. In this chapter, we will show that such “all-or-

nothing” policies apply under limited conditions in startup settings to avoid bankruptcy. 

We illustrate that the incorporation of financial limitations in a startup setting lead to joint 

consideration of quantity and process investment decisions.  

A recently growing body of literature deals with decision models involving the 

financing and operations of startups. Archibald et al. (2002) argue that if the startups are 

more interested in surviving than maximizing their profits, they should employ 

conservative strategies. On the contrary, we show that profit maximizing startups under a 

survival constraint could follow aggressive strategies when they have investment 

opportunities. Babich and Sobel (2004) provide a model to maximize the likelihood of a 

successful IPO for debt financed startups while Buzacott and Zhang (2004) adopt an asset 

based financing scheme for small and start-up firms. However, they do not explicitly 

model for strategic investment or competition which is central to the long term growth 

and survival of startups. Swinney et al. (2006) build the case on how competition 

between startup and established firms differs from competition between two established 

firms and show that a startup’s preference to increase its survival affects the competition. 

However, they consider a single period model with a survival maximizing startup. 

Joglekar and Levesque (2009) analyze the distribution of venture capital between product 

related R&D and marketing, but do not account for either survival constraint or 

competition explicitly. Therefore, our research extends a growing literature on the 

theories of startup driven R&D and operational practices (Shane and Ulrich 2004).  

Finally, an established topic of research in the entrepreneurship literature explores 

risk bearing as the key economic role of entrepreneurs. On one hand, Kihlstom and 

Laffont (1979) and Cramer et al. (2002) show that entrepreneurs are more risk seeking, 

and on the other hand, Halek and Eisenhaur (2001) finds that entrepreneurs do not differ 
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from wage earners and further, are more risk-averse than others in some cases. In a 

closely related empirical work, Wu and Knott (2006) study the entrepreneur’s decision of 

market entry combined with two distinct sources of uncertainty: demand uncertainty and 

uncertainty regarding entrepreneur’s own ability. They argue that entrepreneurs are risk 

averse with respect to demand uncertainty and risk seeking with respect to performance 

uncertainty. Recently, Corbett and Fransoo (2008) also empirically investigate whether 

entrepreneurs follow the newsvendor logic and how their risk preferences affect their 

inventory decisions. We contribute to this stream of literature by explicitly modeling for 

operating decisions and bankruptcy which derives the risk preferences of the firm 

together with the investment opportunities, in a framework sequentially introducing 

technology, competition and demand risks. 

In sum, the effect of cost reducing R&D on the profitability of firms has been 

studied extensively for established firms that are unencumbered by bankruptcy concerns. 

Further, cost reduction strategies adopted after the launch of a breakthrough product to 

maximize the profits is a relevant problem for many startup firms that take on debt and 

face the cash flow related threat of survival. However, this problem has not been explored 

formally. In the rest of this chapter, we set up and study a startup’s production and cost 

reducing investment decisions. 

3.3. THE BASE CASE 

When making production and investment decisions, there are three key factors a 

typical startup considers: customer demand, startup’s technological performance and 

competitive pressures (Shane 2007). To understand the interrelated impact of these 

factors on the operating decisions, we consider a two period model of a startup firm 

offering a single new product. This firm is financed by debt and must generate pre-

specified level of profit after the first period to ensure survival into the second period. 
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The objective of the firm is to maximize the total of two-period profits under the survival 

requirement. In this section we focus on a base case (BC) model with no demand 

uncertainty, and study the impact of technological performance and competitive pressures 

on the startup’s operating decisions. In Section 3.3.1, we start with a simple model which 

serves as a benchmark for our analysis. Then we sequentially introduce uncertainty 

associated with the firm’s process investment and second period competition in Section 

3.3.2 and Section 3.3.3, respectively. For generality, we use the terms “return on process 

investment” and “technological performance” interchangeably throughout this 

manuscript. 

3.3.1. A Benchmark Model  

We start with some key assumptions to set up our model.  

Assumption 3.1. Product R&D is frozen at the beginning of the first period, i.e. at 

market entry. 

At least half of the startup firms in the US enter the market with a novel product 

(GEM Report 2007), and many of these firms continue to invest into product 

development effort. We do not allow for such investments, so that our analysis is not 

confounded by the evolution of product quality. 

 Assumption 3.2. The startup is financed by bank loans with a constant positive interest 

rate.  

We consider a bank-financed startup, but our models and results trivially extend 

to bootstrapped startups. The interest rate is constant and positive, and upon fully paying 

its previous debt the startup can borrow in each period to cover its production cost and 

R&D investment. In general, once the loan is granted to a small firm, the loan terms 

including interest rate and loan limit are determined by industry practices and market 

conditions and do not depend on the conditions of the borrower firm (Petersen and Rajan 
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1994). For ease of exposure, we consider the effect of an explicit loan limit as an 

extension in Section 3.6. There is no time discount on the profits of the second period. 

The analysis is unchanged, if we consider a discount parameter between periods.  

Assumption 3.3. The startup goes bankrupt and gets liquidated if it cannot pay its debt 

at the end of each period.  

Most startups have limited access to capital markets and cannot raise additional 

capital other than their initial funds (Chrisman et al. 1998). In particular, informational 

asymmetries between the owners of the startups and the investors, and the uncertainties 

about the future prospects of the startup severely limit the firm’s access to capital markets 

(Shane 2007). Hence, most new businesses are built with limited capital and face 

immediate bankruptcy in case of a default.  

Based on these assumptions, the timing of the game is as follows. In the first 

period, the startup firm is a monopoly operating with a unit production cost of 1c  and 

receives funds, 1y , with an interest rate of r. It allocates these funds at the beginning of 

the first period between production capacity, 1q , and process R&D investment, A, which 

will in return linearly reduce the unit production cost in the second period to 

( )2 1,c A c Aβ β= − , where β denotes the return on investment (Gupta and Loulou 1998). At 

the beginning of the consecutive period, the startup realizes revenues from sales, observes 

reduction in unit cost due to process investment, and makes the debt payments. In case, 

the revenues are not sufficient to cover the debt obligations, the firm goes bankrupt and 

gets liquidated. If the debt is paid in full then the firm goes into the second period and 

could receive a second round of funding, 2y  to invest in production, as this is the final 

period. We adopt a linear inverse demand function for the startup’s product as 

( )t t tp q qθ= − , t=1, 2, where θ  denotes the constant market size. We offer the following 

as the benchmark model:  
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1 1
1 1 1 1 1 1 2 2( ( ) ) ( ; , )

, , 0
max p q c q ry A q A

q A y
π π β= − − − +

≥

subject to  1 1 1c q A y+ ≤ (3.1a) 

1 1 1 1 1( ( ) ) 0p q c q ry A− − − ≥ (3.1b) 

where 

2 2
2 2 2 2 2 2 2( ; , ) ( ( ) ( , ))

, 0
q A max p q c A q ry

q y
π β β= − −

≥

subject to 2 2 2c q y≤ (3.1c) 

In this model, (3.1a) and (3.1c) represent the financial constraints in the first and 

second periods, respectively, such that the total expenditures of the firm in each period 

are limited by the amount of money borrowed. (3.1b) denotes the survival constraint 

requiring that the money borrowed in the first period should be paid back with interest at 

the end of the period. Based on our model assumptions, (3.1a) and (3.1c) must be 

binding. Therefore, we re-state (3.1) as follows: 

1
1 1 1 1 1 2 2

, 0
( ( ) (1 ) ) (1 ) ( ; , )

q A
max p q r c q r A q Aπ π β

≥
= − + − + +

     subject to  1 1 1 1( ( ) (1 ) ) (1 ) 0p q r c q r A− + − + ≥

     where 
2

2 2 2 2 2 2( ; , ) ( ( ) (1 ) ( , ))
0

q A max p q r c A q
q

π β β= − +
≥

 
(3.2)

Assuming that the return on investment β  is constant and equal to μ ,  we 

characterize the operating decisions and profits in Proposition 3.3.1. We use the 

superscript bc to denote the benchmark case. Later we will use c for the case with 

competition and t for the case with uncertain return on investment. (See the Appendix for 

proofs of the lemmas, propositions and corollaries unless stated otherwise.) 

Proposition 3.3.1: When demand and the return on investment are deterministic, the 

startup’s total profits are maximized at the monopoly quantity, * (1 )
2m

r c
q q

θ − +
= = . 
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Following, the process R&D investment of the startup is bounded by the discounted 

monopoly profits, 
2

max
( (1 ) )

=
(1 ) 4(1 )

= m r c
A

r r
θπ − +

+ +
. Assuming that the cost cannot be driven to 

zero, the optimal process investment for the startup, *A , and the optimal expected profits, 
*π , are given by the following: 

* max 0
,

0 /

bcA if
A

o w
⎧ Δ ≥

= ⎨
⎩

and  

2
max

*

2
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2
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2

0

/
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r c

if
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θ μ

θ
π

− + −

− +
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where 2 2( (1 ) ) 8 ( (1 ) ) 16bc r c r cμ θ μ θΔ = − + + − + − .  

A close examination of (3.2) reveals that the startup’s optimization problem is 

partially separable in production quantity and process investment. Consequently, we find 

in Proposition 3.3.1 that it is optimal to produce the monopoly quantity, and the 

monopoly profits limit the investment amount due to the survival constraint. 

To explain the investment decision, we define the firm’s propensity to invest in 

process improvement as Δ . In particular, if 0Δ < , then the firm does not invest in 

process improvement. Therefore, the profits in each period are identical and equal to the 

monopoly profits. However, if the firm’s propensity to invest is sufficiently high, 0Δ ≥ , 

then it would allocate all of its funds in process improvement and make zero net profits 

after the debt payments, in the first period. It could later generate enough revenues with 

the second period sales to compensate for the missed earnings of the first period. In 

particular, the firm either chooses not to invest, A* = 0, or if it chooses to invest, it invests 

the maximum possible amount, Amax, which would maximize its profits without going 

bankrupt. Therefore, the optimal process investment decision can be characterized by an 

invest-all-or-nothing threshold policy. Further, as the mean return on investment and 

market size increase, the firm’s propensity to invest also increases. 
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3.3.2. Technology Uncertainty  

So far, we have assumed that process investment reduces the future unit cost of 

the firm by a deterministic amount. Nevertheless, for startups with niche processes like 

Faradox and BigFoot Networks return on process investment is inherently uncertain. To 

take this into consideration, we extend our discussion in the benchmark case to consider 

the impact of the return on investment uncertainty on the startup’s operating decisions 

and profits. In particular, for every dollar invested, we assume that the second period cost 

is reduced by a random amount described by β , with a known distribution function, 

( )ψ β , with a mean of μ and a variance of σ2. The following proposition characterizes the 

optimal production and investment decisions in the benchmark model with technology 

uncertainty.  

Proposition 3.3.2: When demand is deterministic, but the return on investment is 

uncertain, then the startup’s optimal production quantity is equal to the monopoly 

quantity. And, the optimal process investment and profits are, respectively, given by 
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where 2 2 2( )( (1 ) ) 8( (1 ) ) 16tu r c r cσ μ θ θ μΔ = + − + + − + − . 

With return on investment uncertainty the firm’s propensity to invest becomes 

larger than the case with no uncertainty in return on investment, i.e., 
2 2( (1 ) )tu bc r cθ σΔ = Δ + − + . Further, the firm profits are also non-decreasing in σ2, so 

when selecting among production technologies, the startup prefers technologies with 

more variable return compared to the ones with relatively certain returns. This may seem 

like a counterintuitive result, but if this technology adoption proves to be successful, then 

the firm could obtain significant cost reduction and have a major increase in profits. That 
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is, the startup disproportionately benefits from upside deviation in return on process 

investment. In our model, this is driven by the convex monopoly profits, 
2( (1 ) ) / 4r cθ − + , with respect to the unit cost in the second period.  

3.3.3. Competition 

In this section, we study the case with competition. The sequence of events is 

precisely the same as the case without competition. The difference is that at the beginning 

of the second period a competitor with an identical product enters the market and firms 

play a Cournot game where the competitor’s best response quantity is denoted by cq . 

The updated sequence of events and the startup’s decisions are summarized in Figure 3.1. 

t = 1

Period 1 Period 2

Startup holds a 
monopoly position.

Start-up decides how much :
(1) money to borrow (y1),
(2) produce (q1) and
(3) investment in process 

improvement (A1), in period one.

Startup (if survives) pays back the
borrowed money and decides how much
(1) money to borrow (y2) and
(2) produce (q2), in period two.

(1) Startup realizes cost reduction due to 
process investment.

(2) Rival firm enters the market and firms 
engage in a quantity competition.

Figure 3.1: Sequence of Events and Decisions in a Two Period Model with Competition 

When a competitor is to enter the market, the startup may not fully know the 

entrant’s production system for a new product, but it may know the competitor’s cost 

through a probability distribution function. Indeed, Faradox Inc., a producer of high 

energy-density capacitors, mentioned in our interview that there was tremendous amount 

of theoretical research in the field of capacitor technologies and it was likely that 

someone might enter their market by developing a new process to produce high energy-
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density capacitors. Hence, from the perspective of Faradox, the efficiency of the 

prospective competitor in the future is highly uncertain and exogenous.   

To incorporate this into our benchmark model, we assume that the unit variable 

cost of the competitor, ξ~ , is distributed with a probability density function of ( )φ ξ , and 

has a mean of λ and a variance of τ2. For ease of exposure, we exclude technology 

uncertainty in this section, but our findings here also trivially extend to the case with both 

technology uncertainty and competition. The following proposition characterizes the 

startup’s optimal production and investment decisions for the benchmark model with 

competition.  

Proposition 3.3.3: Under deterministic demand and return on investment, when there is 

competition in the future period, then the startup’s optimal production quantity is equal 

to the monopoly quantity. The optimal process investment and the optimal profits are, 

respectively, given by 
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where 2( ( (1 ) ) 2) 4 ((1 ) ) 13c r c r cμ θ μ λΔ = − + + − + − − . 

From Proposition 3.3.3, we observe that the propensity of the startup to invest 

increases with the expected unit cost of the competitor, i.e., / 0c λ∂Δ ∂ > . In other words, 

when faced with a strong competitor, the startup is less willing to invest since the benefits 

of investment is reduced under competition. According to our investment policy, the 

variance of the competitor’s cost would have no effect on the investment decision so long 

as the quantity response function is linear in the realization of competitor’s cost. 
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However, since Cournot profits are convex in the competitor’s cost, the optimal profits 

increase as the strength of competition gets more variable because the startup 

disproportionately benefits from high cost entrants.  

Comparing the firm’s propensity to invest with and without competition for 

various levels of competitor’s unit cost, we can further explain the impact of the strength 

of future competition on the firm’s propensity to invest:  

Corollary 3.3.1: In the presence of competition the startup’s propensity to invest 

increases compared to the benchmark case, if the expected competitor is relatively weak. 

In particular:  

i) 7 / 4bc c if θλ μ−Δ ≥ Δ ≤ , 

ii) 7 / 4bc c if θλ μ−Δ ≤ Δ ≥ . 

Corollary 3.3.1 shows that the firm may find it optimal to invest in the presence of 

competition when it is better off with no investment in the benchmark case, i.e., 

0bc cΔ < < Δ . Therefore, the shadow of future competition may encourage investment by 

the startup depending on the expected strength of the competitor.  

3.4. THE STOCHASTIC DEMAND AND SURVIVAL CASE 

In the BC, we studied the startup firm’s operating decisions under deterministic 

demand. However, in most cases the startup would have very limited information about 

the demand, especially for a brand new product. In this section, we examine our model 

with stochastic demand in each period, and replace the deterministic survival constraint 

of the BC with a probabilistic survival requirement.  

3.4.1. The Model with Stochastic Demand and Survival 

In this case, we assume a demand shock, tε , in each period t (t = 1, 2) with a 

normal probability density function, (.)ϕ , with mean zero and variance v2, and 
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cumulative distribution function, (.)ϑ . The minimum profit level required for the survival 

denoted by π  is exogenous and includes the overhead costs like rents and wages. We 

define the first period net expected monopoly profits, mπ π− , as the immediate 

economical viability of the firm (Note that the expected monopoly profits is given by 

1[( ( , ) (1 ) ) ]m m mE p q r c qπ ε= − + ). Under the SDSC case with competition, technology 

uncertainty and stochastic demand, the two-period expected profit maximization problem 

of the startup is given as: 
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(3.3) 

where I is the first period survival indicator (= 1 if the firm survives the first 

period) and M is a large number. In (3.3), the constraints in the second stage of the 

problem only hold if the startup has survived the first period. In particular, unless the first 
period profit for the startup meets the minimum level required for survival ( )1π π< , the 

startup cannot play the second period quantity game. In this case, the survival indicator 

variable I in (3.3) has to be zero and consequently, 2q  is also forced to zero. 

We solve the optimization problem in (3.3) by backward induction. In the second 

period, firms play a Cournot game to maximize their expected profits. Hence, the 

startup’s equilibrium profit, if it could play the second period game, is given by 

( ) ( ) ( ) ( )( )2

2 1 2 2; , , 2 1 , / 9A r c Aπ ε ξ β θ ε ξ β= + + − +  where 2 2( )E ε ε= . By assumption,

2 0ε = . For the startup to participate in the second period, first it has to survive in the first 
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period only if 1 1( )π ε π≥ . After substituting the optimal second period solution, the 

startup’s problem in (3.3) becomes  

( ){ }1 1
1

2
* 2

1 1 1 1 1 1 1 1, ,, 0

( 2(1 ) ( , ))max ( ( , ) ) | ( )
9q A

r c Az E p q c q r c q A A Eε ξ β ε

θ ξ βε π ε π
≥

⎧ ⎫+ − +
= − − + − + ≥⎨ ⎬

⎩ ⎭
 (3.4)

Unlike the BC, the maximization problem is not separable in production and investment 

decisions, and it is non-convex. Nevertheless, we can still prove the following important 

relationship for the optimal decisions. 

Proposition 3.4.1: When demand is stochastic, the startup firm in the first period either 

adopts a conservative operating policy by producing and investing less than the 

monopoly levels i.e., (1 )
2m

r cq q θ∗ − +
≤ = , *

1
m

mA A
r

π π−
≤ =

+
, or an aggressive operating 

policy by producing and investing more than the monopoly levels, i.e., mq q∗ ≥ , 
*

1
m

mA A
r

π π−
≥ =

+
. 

Proposition 3.4.1 provides an interesting risk based justification linking 

production and investment decisions of a startup under stochastic demand and bankruptcy 
risk. The firm is aggressive in investment decision ( )mA A≥ , if and only if it is also 

aggressive in production ( )mq q∗ ≥ . Or, the firm is conservative in investment decision 

( )mA A<  if and only if it is also conservative in production ( )mq q∗ < . If an aggressive 

investment is planned, then the expected cash flows under the monopoly production plan 

is not sufficient to cover the debt payments. Hence, the firm increases its production 

quantity above the monopoly level so as to benefit from upside demand realizations and 

to increase its survival chances and conversely, a conservative investment reduces 

production below the monopoly level. 

In the following proposition, we establish the intimate connection between the 

optimal operating policy of the firm and the survival probability. 
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Proposition 3.4.2: An optimal operating policy is aggressive (conservative) if and only if 

its survival probability,
1

(1 )
1 (1 )

r A
q r c

q
P ε

π
ϑ θ

+ +
− + − + +

⎛ ⎞
⎜ ⎟
⎝ ⎠

, is less (more) than fifty 

percent. 

Proposition 3.4.2 provides an equivalent survival-based definition for optimal 

aggressive and conservative operating decisions. That is, optimal operating policies that 

survive less (more) than 50% chances always involve producing and investing more 

(less) than the monopoly levels, and vice versa. This implies that an aggressive firm is 

expected to go bankrupt on average while a conservative firm is expected to survive. In 

general, an operating policy is considered to be riskier as the survival probability 

decreases.  

In the reminder of this section and in Section 3.5, we explore the factors that that 

drive the optimal operating decisions of the startup under stochastic demand. In 

Proposition 3.4.1 we implicitly assume that the startup would find an investment 

opportunity. However, that may not be the case. Corollary 3.4.1 considers the impact of 

the existence of investment opportunities (with positive NPV) on the operating decision 

of economically viable startup firms. Recall that immediate economical viability means 

the firm’s first period net expected monopoly profits are non-negative. 

Corollary 3.4.1: Suppose the startup firm is immediately economically viable in the first 

period, i.e., 0mπ π− > . Then, 

i) if there are no process investment opportunities, 0A = , the firm always adopts a

conservative operating policy. That is, the firm produces less than the monopoly quantity.   

ii) if there is an opportunity for process investment, 0A ≥ , then the startup may either

adopt an aggressive or conservative operating policy.  

According to Corollary 3.4.1, when there are no investment opportunities, 

immediately economically viable startups always choose a conservative operating policy. 
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To better illustrate our finding, we examine a simple situation with no minimum level of 

profits, π  = 0 and we let the demand shocks in each period ( tε  for t =1, 2) be uniformly 

distributed with U[-b, +b]. Then, the optimization problem takes the following form: 

[ ]
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When there are no investment opportunities (A = 0), ( ,0)f q  is concave in q and 

the optimal quantity is given by 
2

* (1 ) 1 ( 2(1 ) )
2 4 9 m

r c r c
q q

b
θ θ λ− + + − +

= − <
⎛ ⎞
⎜ ⎟
⎝ ⎠

, which 

agrees with our finding that in the absence of investment opportunities, the firm always 

behaves conservatively. The positive second term of the optimal quantity, *q , above 

represents the under-production amount due to stochastic bankruptcy risk in order to 

increase the probability of survival. In particular, if the bankruptcy risk is to be removed 

from the decision framework, the firm simply produces the first best production level, 

i.e., the monopoly quantity. That is, the bankruptcy risk drives an economically viable 

startup to adopt a conservative policy in the absence of investment opportunities. In 

addition, startups with high expected future prospects, such as a large market base, an 

already efficient process technology or a relatively weak competitor, focus more on 

survival in anticipation of future profits. That is, they deviate more from their first best 

operating plans and choose a more conservative policy.  

We will numerically investigate the optimal operating policies for this case in 

Section 3.5. We now turn our attention to a firm that is not economically viable in the 
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first period. We implicitly assume that the firm is economically viable over the planning 

horizon. Otherwise, it is optimal to liquidate the firm at time zero. 

Corollary 3.4.2: Suppose the startup firm is not immediately economically viable in the 

first period, i.e., 0mπ π− ≤ , then the firm always adopts an aggressive operating policy, 

regardless of the existence of investment opportunities.  

When the firm is not immediately viable, e.g., due to high operating costs relative 

to immediate profits, its survival is contingent on the upside deviations in market 

demand. To benefit from these upside deviations and survive, the firm should increase its 

production above the monopoly quantity. Consequently, even with no investment 

opportunities the firm would always choose an aggressive operating policy. We 

summarize the effects of the immediate economical viability and investment 

opportunities on the operating policy of the startup in Table 3.1. 

Our results show that an immediately viable startup with investment opportunities 

may either adopt a conservative or an aggressive operating policy depending on the 

market parameters. To further investigate this case and the impact of market parameters 

on the optimal operating decisions, we present a comprehensive computational analysis 

in the next section. We also note that this case is not analytically tractable. There are 

several reasons for this, including that the objective function in (3.4) is neither jointly 

convex nor concave in 1q and A  for all feasible set of parameter settings. 

Immediately Viable Startup 
( 0mπ π− > ) 

Immediately Non-viable 
Startup ( 0mπ π− > ) 

With Investment 
Opportunities 

Conservative or aggressive 
operating policy depending  on 

market parameters 
Aggressive operating policy 

With No Investment 
Opportunities Conservative operating policy Aggressive operating policy 

Table 3.1: Operating Policy of the Startup 
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3.4.2. Computational Analysis 

In this section, we focus on a set of numerical analyses to illustrate the impact of 

key market factors (demand uncertainty, technological performance, competition and 

minimum required level of profits), on the optimal operating policies (production and 

process investment) of the immediately viable startups with investment opportunities. We 

also provide insights that link the BC to SDSC.  

3.4.2.1. Design of Numerical Experiments 

Our design of experiment focuses on the optimal survival probability as the 

relevant measure of the risk taken by the firm. The survival probability is an endogenous 

variable determined by the firm’s production and investment policy. Recall that a 

conservative policy survives with probability more than 50% while an aggressive strategy 

bankrupts with probability more than 50%. And, a conservative (aggressive) policy 

involves producing less (more) than the monopoly quantity and investing less (more) than 

the expected net monopoly profits.  

We begin with examining the impact of mean return on investment in Section 

3.4.2.2 in an experimental setup that has no competition, deterministic return on 

investment and zero interest rate as in BC. In this case the optimization problem in (3.4) 

reduces to  
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Following, we explore the impact of technological uncertainty and competition on 

the operating decisions in Section 3.4.2.3 and 3.4.2.4, respectively. For ease of 

exposition, throughout our numerical analysis we fix the market size and initial unit cost 

(θ = 10, c = 7), so mq = 1.5 and mπ = 2.25. The standard deviation of demand shock is set 

to v = 1.2. The impact of different levels of v is investigated in Section 3.4.2.5. We 
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present a selective set of our results, but we have tested and confirmed similar results 

with entire sets of values that the model parameters can take.

3.4.2.2. Benchmark Case with Stochastic Demand 

In this section we examine the impact of mean return on investment, μ, and the 

immediate economical viability of the firm through minimum required profits, π . Figure 

3.2 illustrates the optimal operating decisions and the associated survival probabilities for 

all reasonable levels of  μ. We observe in Figure 3.2 that it is optimal to invest if 

μ > 0.9. Τhen, as in the BC, a threshold type of investment policy is optimal, but the 

policy does not have an invest-all-or-nothing structure. As the firm’s potential efficiency 

in cost reduction  increases, the firm raises its investment amount in process technology 

leading to riskier operating decisions with lower survival probability. Indeed, aggressive 

investment becomes the optimal policy for μ > 2.3. In addition, the production quantity 

may either increase or decrease with the investment level to create an operational hedge 

in response to optimal investment decision. 
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Figure 3.3 illustrates the interactive impact of μ and π  on the optimal policy. We 

observe that ‘no investment’ region expands as π  increases. In particular, when π  is 

high, investment creates a very high bankruptcy risk consuming the limited short-term 

profits of the firm. Therefore, the firm avoids investment. On the hand, if π  is low, then 

the firm is expected to have cash in the future and, it may invest some of this cash in 

process improvement without diminishing its survival probability. Further, depending on 

its mean return on investment, the optimal policy is either conservative or aggressive. 
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Figure 3.3: Interaction of μ and π  under SDSC Case 

4.4.2.3. Technology Uncertainty 

In the previous section we discuss the impact of mean return on investment on the 

operating decisions of the firm, but we did not examine the associated uncertainty. We 

complete this discussion by illustrating the effect of technology uncertainty, σ, in Figure 

3.4. For ease of discussion, in the reminder of this section we set 0π = , but similar 

No Investment
( * *0, , 0.5mA q q P= ≤ ≥ ) 

Aggressive Policy 
( * *, , 0.5m mA A q q P≥ ≥ ≤ ) 

Conservative Policy
( * *, , 0.5m mA A q q P≤ ≤ ≥ ) 

Immediately non-viable region

Immediately viable region
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No Investment
( * *0, , 0.5mA q q P= ≥ ≤ ) 
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results can be obtained for other values. Under deterministic demand, from Proposition 

3.3.2, we know that as the return on investment gets more variable and the chances of 

upside deviations increase, the firm is more willing to invest. Similarly, when demand is 

uncertain, Figure 3.4 leads to the observation that for a given level of μ, an increase in 

technology uncertainty decreases the survival chances of the firm, by inducing more 

aggressive operating decisions with higher production and investment levels. 
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Figure 3.4: Optimal Production Quantity and Process Investment as a Function of 
σ (μ = 1.5) 

3.4.2.4. Competition 

In this section we explore the impact of competition on the operating decision of 

the firm under stochastic demand and deterministic return on investment. In Figure 3.5 

we present the optimal operating decisions as well as the associated survival probabilities 

as the competitor’s expected cost λ changes for a given level of return on investment μ.  
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Figure 3.5: Optimal operating decisions and survival probability as a function of λ       
(μ = 1.5). 

Similar to the BC, Figure 3.5 shows that the firm starts investing when the 

competitor is sufficiently weak and benefits from investment in the future period. 

However, the firm may invest (and produce) either aggressively or conservatively 

depending on the level of λ. Further, for a given level of μ it does not necessarily keep 

raising its investment amount as the competition gets weaker because although the 

expected marginal second period profit of the firm is increasing with λ, a higher 

investment amount also increases firm’s exposure to bankruptcy. Figure 3.5 illustrates 

this tradeoff that firm chooses a conservative investment policy when faced with very 

weak competitors to control the bankruptcy risk.  

Figure 3.6 further explores the interrelated impact of competition and the mean 

return on process improvement on the optimal operating policy of the firm. The startup 

makes no process investment if it is not efficient to engage in competition with a 

relatively strong competitor.  A conservative policy is chosen when the future entrant 

would not intensify competition because it has relatively high cost production process. 

Further, an aggressive policy is adopted when the startup is sufficiently efficient in cost 

reduction and the competitor is neither too strong nor too weak. In this case, the second 
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period profits are distributed more equally between the firms. Hence, by following an 

aggressive strategy (if it is not too costly) the startup may significantly increase its share 

of expected profits in the second period and obtain a strong future market position.  
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Figure 3.6: Interaction of μ -λ under SDSC Case 

3.4.2.5. Demand Uncertainty 

Demand uncertainty is an exogenous factor influencing the bankruptcy risk. 

Recall that with demand uncertainty investment amount may be either less or more than 

monopoly investments. Figure 3.7 illustrates that demand uncertainty shrinks investment 

regions when it is optimal to start investing in process R&D, and the thresholds for 

process investment in the SDSC are higher than the BC, ceteris paribus. 
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Figure 3.7: Partitioning of the Process Investment Space under the BC and SDSC 

Figure 3.8 shows the impact of demand variability and mean return on investment 

on the optimal policy when there is no competition and technological variability. As 

shown in Figure 3.8, when v is very low, the startup either chooses not to invest or invests 

conservatively. A higher variability of demand provides the firm with the opportunity of 

survival under aggressive investment plans. Hence, aggressive policies are only possible 

if demand is sufficiently variable to provide high demand and the firm is efficient in cost 

reduction. Indeed, when demand is deterministic as in the BC, aggressive policies are 

infeasible. These observations combined with our earlier findings support that demand 

variability is necessary to induce immediately viable firms to increase their investment 

amount and adopt aggressive policies if the increased second period profits due to 

aggressive investment compensate the excess risk taken by the firm. Also note that Figure 

3.8 generalizes Figure 3.2 which is constructed for v =1.2 only. 
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Figure 3.8: Interaction of μ−ν under SDSC Case 

3.5. EXTENSION: DEBT CAPACITY 

To isolate the impact of bankruptcy risk, we have assumed throughout the chapter 

that the startup firm is able to borrow enough to finance its optimal operating policy in 

the first period. In this section we introduce a debt capacity, L, which limits the total cash 

available to the firm ( cq A L+ ≤ ), and examine its effect on the risk preferences of the 

startup. In Proposition 3.5.1 we characterize the impact of debt capacity on the base case 

results under deterministic demand. 

Proposition 3.5.1: Under deterministic demand and return on investment, with no future 

competition,  

i) if maxmL cq A≥ + , the debt capacity is never binding. 

ii) if mL cq≤ , the debt capacity is always binding. 

iii) if maxm mcq L cq A< < + , the debt capacity may or may not be binding depending on 

the market parameters.  
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If the debt capacity is larger than the maximum amount of cash that may be 

needed by the firm, i.e., maxmL cq A≥ + , additional cash has no value to the firm. In this 

case, the optimal operating decisions are characterized by Proposition 3.3.1 and the 

firm’s propensity to invest is unaffected. However, if debt capacity is not sufficient to 

finance the monopoly production level, the firm may invest additional capital into 

production and increase profits. Also, when the debt capacity is moderately tight 

( )maxm mcq L cq A< < + , the firm may benefit from additional cash if investment is 

optimal when there is no debt capacity. Further, in the following corollary we discuss the 

firm’s propensity to invest with a binding debt capacity. 

Corollary 3.5.2: Under deterministic demand, when there is a binding debt capacity, 

startup’s propensity to invest decreases. 

We show (Proposition 3.3.1) that the startup’s operating policy with no debt 

capacity can be described as an “all-or-nothing” policy, i.e., whether to invest nothing or 

to invest all of the net monopoly profits, maxA . However, under a binding debt capacity, 

the startup can never finance to invest as much as maxA . Besides, since the marginal return 

on investment is increasing in A, reducing the maximum investment level decreases the 

benefits of scale economies in investment and hence, decreases the firm’s propensity to 

invest. Figure 3.9 illustrates the firm’s propensity to invest lΔ  as a function of the debt 

capacity and compare it to bcΔ . Note that the firm invests if 0lΔ > . 
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Figure 3.9: The impact of debt capacity on the propensity to invest in the BC
(for θ =10, c =7) 

In Figure 3.9, the gap between solid and dashed lines denoted by u corresponds to 

the impact of debt capacity on the propensity to invest. For example, when there is no 

debt capacity, the startup optimally invests if μ > 0.55, but with a debt capacity of L = 4, 

the startup’s mean return on investment should be at least u + 0.55 = 0.76 to start 

investing. As the debt capacity increases, the investment gap decreases and becomes zero 

when the debt capacity is not binding (L > 12.75).    

Figure 3.10 presents the impact of debt capacity on the optimal operating policy 

of the startup under stochastic demand and survival. Note that Figure 3.10 is identical to 

Figure 3.6 for no debt capacity case. We observe that, our discussion in Section 3.4.2.4 

still holds, but the limiting effect of a tighter debt capacity is clear. Aggressive and 

conservative policy regions shrink and no-investment region expands with a tighter debt 

capacity.  
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Figure 3.10: Impact of debt capacity on the operating policy in SDSC. 

Overall, our observations suggest that the firm’s propensity to invest is reduced 

with the debt capacity in the deterministic demand case, and the debt capacity makes the 

firm more conservative under stochastic demand. However, the basic results we have 

shown for the BC and SDSC remain valid under reasonably tight debt capacities.  

 3.6. DISCUSSION AND CONCLUDING REMARKS 

Existing organizational theories (Bhide 2000) have marshaled evidence to argue 

that startup managers make myopic choices in their long term investment decisions when 

faced with uncertainty and financial pressure. Our analysis explores the impact of three 

key risk drivers (demand, technology and competition) on the short and long term 

production and process investment decisions of startups under the presence of explicit 

financial constraints. Since financial limitations alter optimal operating decisions; our 

results provide a risk based justification for startups linking their production with their 

process R&D investment. 
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3.6.1. Optimal Operating Decisions of Startups with Deterministic Demand 

Under deterministic demand we find that the startup always produces the 

monopoly quantity and uses a process investment threshold policy involving an “invest-

all-or-nothing” type of structure. The investment policy is described by the firm’s 

propensity to invest. We investigate the impact of demand, technological performance 

and competition on the firm’s propensity to invest in process improvement. In a large 

market the firm has high potential to recover the process investment. Similarly, higher 

expected return on investment (better expected technological performance) increases the 

potential benefits of investment and makes the firm more willing to invest. Further, as in 

new technology development, the firm disproportionately benefits more from upside 

deviations of return on investment. Hence, the firm’s propensity to invest increases as the 

process technological performance gets more variable.  

Impact of competition is more involved. As the expected competitor in the future 

gets stronger, it chips off future profits and the startup’s propensity to invest decreases. 

However, compared to the monopoly situation, the startup may invest to mitigate the 

impact of competition and secure its future earnings if the competitor is not very strong. 

We summarize the impact of key parameters on the optimal process investment of the 

startup under deterministic demand (base case) in Table 3.2. Recall that in BC the firm 

always produces the monopoly quantity. 

Factor Impact on Optimal Operating Policy 

Return on process investment The firm’s propensity to invest Δ  increases with mean (μ) and 

standard deviation (σ) of return on process technology investment. 

Competition Δ  decreases with expected level of competition (λ). 

Δ  increases compared to the monopoly case, if the competitor is not 

very strong.  

Debt Capacity Δ  decreases with debt capacity (L). 
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Table 3.2: Impact of Key Factors on the Optimal Operating Policy under Deterministic 
Demand 

3.6.2. Optimal Operating Decisions of Startups with Uncertain Demand 

In the deterministic base case the monopoly firm’s profitability is guaranteed after 

the first period. However, in the stochastic demand and survival case, demand may be too 

low and profitability is not assured. Therefore, the probabilistic survival constraint 

becomes critical. Recall from Section 3.2 that this constraint is a unique risk driver that 

has not been addressed in literature. It shapes our results as follows: while the decision to 

invest in process development at early stages reduces the startup’s profits and increases 

its exposure to bankruptcy, the low cost production process in subsequent periods could 

improve the startup’s competitiveness and its market position. Hence, our core result 

states that under stochastic demand a central consideration in the startup’s decision on the 

investment allocation is the tradeoff between the long-term expected profits and short-

term bankruptcy risk. 

When there is no demand risk, the firm always produces the monopoly level and 

invests nothing or all of the monopoly profits, as shown in the base case. When faced 

with stochastic bankruptcy risk, the startup sacrifices some short-term profits by 

deviating from its first best production plan. In the conservative case, the firm under-

produces so as to allocate more cash to process R&D while controlling the survival 

chances. Further, depending upon competitor’s cost, technological performance and 

aggregate demand, the startup may also invest aggressively by increasing the investment 

level above the BC level. In this case, the startup over-produces (more than the monopoly 

quantity) to cover the higher bankruptcy risk due to the aggressive process investment. 

That is, from an operational perspective, the startup hedges aggressive investment 
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decisions by producing aggressively while conservative investment decisions involve 

conservative production plans. 

Further, we identify two factors influencing operating decisions of startups: (1) 

the existence of positive NPV investment opportunities and (2) the immediate 

economical viability of the firm. We have shown that the startups that are not 

immediately economically viable adopt aggressive business plans, while immediately 

economically viable startups with no investment plans would always be conservative. 

Under stochastic demand, an intriguing case for decision making is revealed when there 

exists investment opportunities, and the firm is immediately economically viable. In this 

case, we numerically investigate the startup’s optimal operating decisions and find that 

depending on demand uncertainty, success in process development, and anticipated 

competition, the firm could either follow an aggressive or conservative investment 

strategy. Our analysis indicates that the startup becomes aggressive and adopts riskier 

operating plans with lower survival chances when its efficiency of cost reduction 

increases or when faced with moderately strong competitors. Our results also demonstrate 

that demand uncertainty drives aggressive behavior. Since the survival of aggressive 

policies is dependent on the upside realizations in demand, highly variable markets create 

an incentive to follow aggressive policies. These results are summarized in Table 3.3. 

Factor Impact on Optimal Operating Policy 

Return on process 

investment 

No investment for low returns 

Conservative operating policy with moderate returns  

Aggressive operating policy with sufficiently high μ  and σ   

Immediate 

economical 

viability 

No Investment for low levels of immediate economical viability, mπ π− .

Conservative operating policy for high levels of mπ π−   

Aggressive operating policy for moderate levels of, mπ π−   
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Competition No Investment with strong competitors 

Conservative operating policy with weak competitors 

Aggressive operating policy with moderately strong competitors 

Demand Aggressive operating policy with higher demand variability 

Debt capacity Conservative operating policy with tighter debt capacity  

Table 3.3: Impact of Key Factors on the Optimal Operating Policy under Stochastic 
Demand 

We discussed our results with startup managers in search of process improvement 

opportunities in order to seek feedback about the model outcomes. In general, there 

seems to be an agreement among our respondents about the risky nature of process 

investment and the operational levers for hedging these risks. Some managers also 

pointed to additional factors that come into play into such decisions. For instance, the 

managers at Bigfoot Networks indicated that they currently outsourced semiconductor 

manufacturing and was looking for in-sourcing options, because it might provide 

opportunities for cost reduction. Faradox decided to use an emerging technology fund 

from Central Texas Regional Center of Innovation and Commercialization to develop a 

new fabrication process because production process has become a key part of their long-

term business model. Below, we discuss the limitations of our model and potential 

extensions that have come up as a result of such field work.  

3.6.3. Limitations and Extensions 

We have studied process improvement which reduces the future unit cost. 

However, it would be interesting to study other forms of strategic investment, such as 

quality enhancing R&D, marketing and advertisement, which may also improve the 

future prospects of the firm. Further, our models and results trivially extend to 

bootstrapped startups. This extension is particularly important because a significant 



www.manaraa.com

 84

portion of the new firms are financed by bootstrapping (Bhide 2000). We also do not 

consider venture capital funded startups which may be an interesting future research 

direction. And, startups in our model do not consider exit strategies, e.g., mergers or 

acquisition choices, which are also central to process investment decision. It would be 

useful to explore how investment in process development change without financially 

risking the startup’s survival when the startup’s objective is to signal a potentially strong 

market presence in order to look more attractive for a takeover. This could alter the 

startup’s decisions and yield different results. And finally, it ought to be possible to test 

the application frameworks in Tables 3.2 and 3.3 empirically. Investigating these issues 

will enhance our understanding of a startup’s decision making with regards to product 

and process R&D management strategies.
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Chapter 4 

An Integrated Approach to Commodity Risk Management 

4.1.   INTRODUCTION AND MOTIVATION 

 Maximizing firm value, defined as the total properly discounted value of 

expected cash flows, is a central concern for the managers of publicly traded companies. 

In this chapter, we provide a model that links the financial risk management and the 

operational decisions of a value maximizing firm, under the presence of capital market 

imperfections. An overarching implication of our analysis is that publicly traded firms 

may significantly increase their market value, and generate more wealth for their 

shareholders by effectively integrating their financial risk management and production 

decisions.  

 Our research is motivated by the flour milling industry. Milling is the process of 

grinding and sifting wheat into flour which is a principal ingredient in the manufacture 

and production of bakery goods. Other major uses of flour include pasta, and blended and 

prepared flour packages (Harwood et al. 1989). The milling process also produces animal 

feed as a by-product. 

 A typical flour miller buys wheat from the market, either directly or through a 

third party commodity trading firm such as Cargill or ADM among others, and converts it 

into flour which is sold to the bakers. Historically, as milling is a weight losing activity, 

mills were located near wheat growing areas to save on the costs of transportation 

(Barber and Titus 1995). However, over the last two decades, increases in the efficiency 

in storage and transportation activities together with an enhanced business emphasis on 
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responsiveness to demand fluctuations, has led mills to migrate near the consumption 

areas. 

 In our motivating example, it takes around two weeks for the miller to receive a 

wheat order. Once the wheat is received, it takes one to two days to convert it into flour 

and deliver it to the customer. To effectively meet the demand, millers usually carry 

inventory of wheat and convert it into flour when they receive a firm customer order. 

Indeed, the flour market is very competitive due to low product differentiation, and 

unmet demand is quickly satisfied by competitors.  

 On the other hand, long delivery lead times together with highly volatile wheat 

prices create a significant risk of holding inventory. For example, in late April 2009 

wheat futures for July 09 delivery was trading around 520 cents per bushel (CPB). 

However, by the end of May 2009 prices quickly soared up to 670 CPB while during the 

following two weeks prices plummet down to 580 CPB (Figure 4.1 below shows the 

change in wheat prices during the first half of 2009). Hence, the millers carrying 

inventory during this period, experienced a sharp increase and then a decrease in the 

value of wheat they have in their silos. 

Figure 4.1: Wheat Futures Prices for July 2009 Delivery 
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The sales price of flour is highly correlated with the wheat prices, and the changes 

in wheat prices are quickly reflected to flour prices. Hence, fluctuations in wheat prices 

not only impact the input costs but also affect the revenues of the miller. Table 4.1 below 

shows the relationship between wheat and flour prices between 2004 and 2009. As it is 

suggested by the table, millers operate with very thin profit margins (an average of 3-4%) 

and, from a financial perspective, chances in wheat prices may easily cause the millers to 

drain their cash reserves or default on their debt obligations. Table 4.1 also shows that 

despite the fluctuations in the wheat and flour prices, the profit margin of the milling 

business remains roughly the same.   

Table 4.1: Wheat and Flour Prices from 2004 to 2009 (USDA 2009) 

When established firms run out of cash or default (either due to price or demand 

fluctuations), then usually they do not immediately go bankrupt or get liquidated, but 

they face financial distress. Indeed, flour millers typically have significant fixed 
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(tangible) assets and equipment which enable them to raise new capital and finance their 

operating plans. In our motivating case, millers may borrow from a bank line of credit, or 

as it is often the case, from an intermediary commodity trading firm, such as Cargill, who 

offers fast-response short-term financing in addition to delivering wheat from market to 

the millers. However, there is a cost premium for using this external financing; for 

example, Cargill charges double digit interest rates to the millers who operate on a 3-4% 

average profit margin. In the finance literature, the cost of external financing is 

recognized as a common form of financial distress cost (FDC).  

 In this research, we examine how financial risk management can be integrated 

with the operating decisions so as to control the firm's exposure to financial distress risk 

and to maximize the firm value. In Figure 4.2, we demonstrate the typical sequence of 

decisions and the allied cash flows for a flour miller. The firm orders wheat from the 

wheat market at the current spot price which is delivered by the commodity trading 

company at a pre-negotiated delivery cost. The firm (the miller) also locks in a set of 

wheat futures contracts to hedge the commodity price risk. When internally generated 

cash is exhausted, external financing is received at a premium cost. Finally, wheat is 

converted into flour and sold to the bakers.  

Figure 4.2: Summary of Operating and Financial Decisions of the Miller 

Now Then

1-Order for wheat 
2-Determine the financial 
hedging policy  

Receive and convert wheat into 
flour and sell to the bakers 

1- Receive revenues from operations 
2- Receive (possibly negative) cash flow 
from hedging transactions 
3- Realize cash outflows (fixed costs, cash 
transfers and dividend payments) 
4- Place new wheat orders 
5- Pay for external financing  
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Millers usually order wheat and produce flour in order to meet a set of 

deterministic customer orders as well as a set of future uncertain orders. In this research, 

we consider two business models for the operations of the firm. In the first case, the 

miller operates under fixed flour contracts in a Make-to-Order (MTO) business 

environment with deterministic demand. Second, we examine a case representing a 

Make-to-Stock (MTS) business plan with demand uncertainty. In practice, depending on 

their agreements with customers, and the lead time for wheat delivery, millers operate 

under a production system that has elements of both MTO and MTS environments. 

 Flour, which is mainly sold to the bakers, is a commodity-like product, i.e., 

product differentiation is minimal among different millers, but there is no explicit 

commodity market for it. Further, the flour market is very competitive and the pricing of 

flour strictly depends on the current wheat spot price. In particular, within a given 

geographical region, the competitive nature of the milling industry leads the millers to 

very quickly reach a single flour price by adding a standard margin (which includes a 

standard unit manufacturing cost and profit); in our model we assume this profit margin 

is an additive constant for all prices of wheat. For all practical purposes, both wheat and 

flour are non-perishable items and hence the leftover inventory can be easily carried over 

to the next production period, while the excess demand is lost.   

 As it is well known in the finance literature, in the absence of frictions, engaging 

in financial hedging is a neutral proposition. That is, it should not affect the optimal 

production plan, and it does not create value for firm's shareholders. However, when the 

firm faces capital market frictions, such as in our case costly financial distress, financial 

hedging can contribute to shareholder-value maximization. We show that, in the MTO 

case, it is optimal and possible to completely hedge for the price risk and totally eliminate 

the financial distress costs via taking an appropriate position in the futures market. On the 
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other hand, in the MTS case, the uncertainties associated with the future production plans 

limit the effectiveness of financial hedging decisions. In general, it is not possible to 

completely eliminate the financial distress risk, but appropriate financial hedging plans 

may significantly reduce it. We show that a coordinated financial hedging and operating 

plan contributes to shareholder-wealth creation (1) by reducing the firm's exposure to 

financial distress risk and mitigating the corresponding costs, and (2) by enabling the firm 

to operate at a higher level of output. 

 The rest of the chapter is structured as follows. In Section 4.2, we provide a 

detailed review of the related literature in finance and operations management. Then in 

Sections 4.3 and 4.4, we provide a background on the evolution of stochastic commodity 

prices and discuss the dynamics of flour price and demand, respectively. Following, 

Section 4.5 details our mathematical model and Section 4.6 concludes with a summary of 

our results.  

4.2.   BACKGROUND AND LITERATURE REVIEW 

 Since the seminal paper of Modigliani and Miller (1958), it is well known in the 

finance literature that, with perfect capital markets, financial risk management does not 

create any value. In particular, when there are no capital market frictions such as 

informational asymmetries, taxes and costs associated with transactions, bankruptcy and 

financial distress, hedging for financial risk does not add value to the firm since the 

shareholders can replicate any risk management activities implemented by the firm at the 

same cost. In the finance literature, financial risk management is explained through two 

major theories: (1) shareholder-value maximization, and (2) managerial motives and risk 

aversion (agency issues) (Jin and Jorion 2006).  

Financial hedging reduces the variability associated with the future cash flows of 

the firm. The value maximization theory argues that, fluctuations in future cash flows 
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involve certain costs, due to capital market imperfections, and firms may reduce these 

costs by financial hedging. Smith and Stulz (1985) claim that due to direct and indirect 

costs associated with financial distress, firm value is a concave function of future cash 

flows and hence financial hedging increases firm value. They also argue that convex tax 

schemes create a similar incentive to reduce the variability of the cash flows by financial 

hedging. On the other hand, Stulz (1990), Bessembinder (1991), and Froot et al. (1993) 

show that firms may also hedge to mitigate the problem of under-investment, when there 

is a cost premium for external financing.  

The second stream of the theory explains hedging through managerial motives 

derived from the managers' desire for maximizing their personal expected utility rather 

than maximizing wealth creation (i.e., rather than making decisions leading to Net 

Present Value (NPV) maximization). In particular, if the managers are risk averse, and 

their compensation is based on the end-of-period firm value, then the managers have a 

motivation to hedge (Stulz 1984, Smith and Stulz 1985).  

 In this chapter, financial risk management activities are motivated through the 

existence of financial distress costs. Direct and indirect costs of financial distress have 

been widely studied in the finance literature. Direct costs may include the legal costs of 

debt negotiations and cost of external financing while the indirect costs include lost sales, 

lost market share, and decreased credit ratings (see Purnanandam 2008 and Hotchkiss 

2008 for a recent review of the literature on the cost of financial distress). In our 

motivating example, as it is predicted by the pecking-order theory, flour millers first rely 

on internal cash to finance their operating expenses including the fixed and variable costs 

associated with procurement and production, as well as other cash outflows such as 

dividend payments and any other cash commitments considered in the firm's financial 

plan. If the internally generated cash is not sufficient to cover these cash outflows, then 
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the firm faces financial distress and incurs a cost proportional to the amount of the 

shortfall.  In particular, in our model we consider the cost premium of external financing 

which is a specific form of financial distress cost.  

 Unlike the finance literature dealing with costs of financial distress, in this 

research we model the specific linkages between the operating decisions and the costs of 

financial distress. Hence, our results provide an explicit relationship between operating 

and hedging policies and their implications for value creation. 

 On the other hand, the connection between operational and financial decisions 

has recently received attention in the operations management literature. Not surprisingly, 

the operations management literature also follows the two main streams of finance 

theories to explain the value of jointly considering financial and operational decisions. 

Papers including Gaur and Seshadri (2005), Ding et al. (2007) and Chen et al. (2007) 

study the value of financial hedging from a risk-averse decision maker's perspective and 

consider the objective of maximizing expected utility.  

 A second stream of papers including Buzacott and Zhang (2004), Archibald et al. 

(2002), Swinney et al. (2005) and Babich and Sobel (2004) consider a firm with limited 

access to capital markets under the threat of bankruptcy (i.e., a small private firm). 

Hence, both of these research streams fall outside Miller-Modigliani framework.  

 Gaur and Seshadri (2005) address the problem of hedging inventory risk in a 

multi-period newsvendor environment when the demand is correlated with the price of a 

financial asset. Their objective is to maximize the expected utility of a risk-averse 

decision maker. Considering a wide range of utility functions and hedging strategies, they 

show that, a risk-averse decision maker orders more inventory when he or she hedges the 

inventory risk. Ding et al. (2007) consider the financial and operational hedging problems 

faced by a multi-national firm which has a production facility in one of the two markets it 
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sells to. The firm commits to capacity before the selling season and faces both demand 

and currency exchange rate risk. They consider a real option to partially hedge against the 

demand uncertainty, and use financial options on the currency exchange rate to hedge 

against the currency risk. The objective of the decision maker is to maximize the 

expected utility in a mean-variance utility framework. The authors derive the optimal 

capacity investment and financial hedging decisions, and investigate the impact of the 

operational hedging (capacity allocation option) and the financial hedging on the 

operating decisions of the firm. 

 As expected, the connection between finance and operations is most easily 

observed when managing start-up operations. Buzacott and Zhang (2004) establish the 

link between the financial capacity and the operating decisions of a retailer that has no 

fixed assets, via incorporating an asset-based financial constraint on the firm's debt 

capacity. Under deterministic demand, they provide a multi-period model to maximize 

profits where the retailer borrows from a bank to finance its operations. In a single period 

newsvendor environment, they also analyze a leader-follower game between the bank and 

the retailer. The retailer decides the production quantity and the loan amount while the 

bank decides the loan limit and the interest rate.  

Archibald et al. (2002) consider a multi-period inventory management problem 

for a startup firm with the objective of maximizing survival. The firm starts with an initial 

inventory and capital, and survives if its initial capital plus earnings are enough to cover 

the overhead cost in each period. No external funding is considered. Swinney et al. 

(2005) also consider a startup firm with the objective of maximizing survival probability 

in a single period model with competition. Financing cost is implicitly modeled as a part 

of the unit capacity cost, and the bankruptcy occurs if the profits at the end of the period 
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are less than an exogenous threshold (this threshold implicitly includes the interest 

payments).  

 Babich and Sobel (2004) study the coordination of operational decisions 

(production and sales) and financial decisions (loan size) to maximize the expected 

discounted proceeds from an initial public offering (IPO). Financial and operational 

decisions are linked to each other through a financial constraint which requires non-

negative profit in each period after the debt payments.  

 Consequently, in the operations management literature, the finance-operations 

interface is studied either in a utility maximization framework, or in a startup setting with 

bankruptcy risk. Hence, the findings of the literature do not necessarily extend to publicly 

traded firms who strive to maximize shareholder-value. Different from the above research 

streams, we study the finance-operations interface for a public corporation within the 

value framework of finance; hence our findings do not require any specific assumptions 

about the investors' utility functions.  Moreover, we contribute to the operations 

management research by examining the impact of the costs of financial distress on 

hedging and operating plans. 

4.3.   STOCHASTIC MODEL OF STORABLE COMMODITIES PRICES 

In this section, we briefly discuss the literature on evolution of spot and futures 

commodity prices, and explain the concept of marginal convenience yield. We denote ts

as the spot price of the commodity at time t , and we assume it will evolve stochastically 

through time as a function of only the information contained in the commodity price state 

space vector at time t , tP . Thus we assume the current spot price, ts , as well as the 

transition probabilities of the commodity price process from ts  to its value at time t t+ Δ ,   

denoted as t ts +Δ , can be obtained from the information contained in tP . To preclude risk-

free arbitrage opportunities, we define the time t  unit price of a futures contract for the 
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commodity with delivery date t t+ Δ , denoted as ,t t tf +Δ , using the risk-neutral valuation 

approach (Duffie 1992) as [ ], |=t t t P P t tt t t
f E s+Δ +Δ+Δ

Q  for any > 0tΔ . The superscript Q  and 

subscript tP   in the expectation operator indicate the expectation was calculated using the 

risk-neutral probability measure of the commodity price process, and this expectation is 

conditioned on the information in the state vector tP   observable at time t .   

The stochastic process governing the evaluation of spot price ts , and futures price 

,t t tf +Δ  are obtained as (deterministic) functions of tP  and tΔ . We denote the risk-neutral 

probability density and cumulative distribution functions for ts  as (.)
t

Q
sφ  and (.)

t

Q
sΦ , 

respectively. We further assume the market trades enough financial instruments to 

replicate the evolution of tP  so that we can find a unique risk-neutral probability measure 

for the evolution of tP . 

 The difference between the current spot price, ts , and the futures price observed 

in the market for a commodity determine the economic cost of holding the commodity as 

inventory; in our model this difference is random, and it is also referred to as marginal 

convenience yield in the economics literature (Pindyck 2001). Specifically, the marginal 

convenience yield is the difference between the cost of buying and storing the commodity 

now, and the present value of the cost of buying it in the futures market for delivery next 
period, , 1,t t t ts h fβ β ++ −  and it is the economic cost of holding a unit in inventory. Notice 

that to exclude arbitrage opportunities we must have, at any time, a non-negative 
marginal convenience yield, i.e., , 1 0t t t ts h fβ β ++ − ≥ . Our models will be formulated in 

terms of primary, out-of-pocket costs such as ts , th , and , 1t tf + ; having a non-negative 

marginal convenience yield is an economic condition that, not surprisingly, arises as a 

part of the necessary conditions of optimality in our models.  
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4.4. WHEAT AND FLOUR PRICES AND THE DEMAND FOR FLOUR 

 Demand for flour is largely driven by the consumption of bread and other baked 

products. Bread consumption is affected by a number of economic, cultural and 

environmental factors. Anecdotal evidence indicates that weather has a large impact on 

short term, day to day, fluctuations in bread consumption; people are likely to increase 

their consumption of baked products during cold spells and are likely to decrease it 

during warm spells. Interestingly, even though wheat flour is the key ingredient in baked 

products, short term fluctuations of wheat prices do not have a significant effect on the 

consumption of baked products. 

 This phenomenon is reasonable as the cost of wheat is a very small fraction of the 

total price paid by the customer for the final product, and even if the price of wheat 

changes from one day to the next, the price for the final product does not. Consider wheat 

contract KWU9 (hard red wheat for delivery on Sept 09) which traded at KBOT at 

$5.49/bushel on July 24, 2009. When we consider that a bushel of wheat weighs 60   

pounds, then a pound of wheat costs $5.49/60 = $0.0915 . Thus in a hypothetical loaf of 

bread that requires 1 pound of wheat and retails at $2  at the bakery, the cost of wheat 

represents only 4.6%  of its retail price. If we consider a cake with similar wheat content 

that retails for $10 , then the cost of wheat represents about 0.9%  of the retail price. 

Thus, even though wheat is the central ingredient in bread, a 10%  increase in the price of 

wheat, which represents a rather sharp short-term increase, will increase the cost of wheat 

by only 0.5%  and 0.09%  of the retail price for the loaf of bread and the cake, 

respectively. 

 Although bread and baked goods are usually differentiated/branded products, 

flour is not. Thus, even though in the short-term, the retail price of baked goods is not 

drastically affected by the day to day fluctuations in the price of wheat, competition for 
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the wheat millers is cutthroat, and efficient management of their procurement and 

production operations is crucial.  

 Based on the above observations, our model assumes demand is independent of 

price at any time .t  We further assume demand is uncorrelated with the returns of the 

stock markets, hence demand risk is fully diversifiable. This assumption is consistent 

with the findings in Berling and Rosling (2005). Under the above assumptions, the 

probability distribution of demand is independent from the probability distribution of the 

price process, and the risk neutral distribution of demand is equal to the historical (true) 
probability distribution of demand, (.) (.)

t t

Q
ξ ξΦ = Φ . 

4.5.   MATHEMATICAL MODEL 

In this section, we provide a stylized model for the operating and financial risk 

management decisions of a flour miller which buys wheat from the commodity market 

and sells flour. We consider the objective of maximizing firm value, i.e., the total 

discounted value of expected cash flows over T  time periods. At each time period t , the 

firm decides (1) how much commodity to order and, (2) the composition of financial 

instruments to hold1. We let tx  denote the number of futures contracts shorted at time t , 

for delivery at 1t + , and  tq denotes the number of commodity contracts purchased at 

time t  to be shipped immediately and received in the mill at 1t + 2.  Regarding the 

flour price, as it is suggested by market data (see Table 4.1), we assume that it is a linear 

1 In our model, we restrict the composition of our financial hedging portfolio to futures contracts. In 
practice, futures contracts (compared to financial options) are much more heavily used by the firms for 
hedging purposes due to their simpler nature and higher liquidity. For example, the KEU09 Sept. 09 wheat 
futures contract at KCBOT showed in mid-July, 2009 an open interest of over 41,000 contracts.  
Comparatively, the total open interest on all option contracts on this same futures contact, including calls 
and puts at all traded strike prices (a total of sixty different options) was less than 5,000 contracts.  
Typically the open interest on a specific option was between 2 and 200 contracts, a very significant drop in 
the liquidity of this instruments when compared to futures. 
2 One contract for wheat is defined at KCBOT as 5,000 bushels, and for shipping purposes is equivalent to 
a full railroad cart. 
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function of the spot price and given by ts λ+ , at time t . Our model also assumes an 

initial financial plan which includes a starting cash reserve, 0y , as well as a pre-

determined sequence of cash outflows, 1= [ ,..., ]Tη η η . These cash outflows account for 

fixed costs of operation, cash transfers to different divisions of the firm, as well as 

possible funding for dividend payments and other financial commitments. 

 Below we provide the stylized sequence of decision and events for the operations 

of the firm at the beginning of time t  :  

 ( i ) First, the firm observes tP  (which implies the current spot price, ts  and the 

futures price, tf ), and the flour demand for the current period, tξ . In reality, millers 

continuously receive orders from customers and meet demand. For ease of exposition, we 

discretize the planning horizon of the firm and assume that demand is observed at the 

beginning of each period. 

 ( ii ) Following this, the firm receives the wheat ordered in the previous period, 

1tq − , and on hand wheat inventories increase from 1tI −  to 1 1t tI q− −+ . Next, if available, 

enough wheat is converted into flour to meet the current period's demand, tξ . Excess 

flour demand is lost, and excess wheat inventory tI  is carried to the next period, at a cost 

of  h  per unit per period. In particular, the miller sells the minimum of 1 1t tI q− −+  and tξ   

at the current flour price, .ts λ+  

 ( iii ) We define the initial cash reserves of the firm as the cash on hand prior to 

receiving the cash flows at the beginning of time t and we denote it as ˆ ;ty  this is the 

cash the firm brings in its transition from period 1t − . Also at the beginning of period t   

the firm receives cash flows from operations, 1 1( ) min( , )t t t t ts I q hIλ ξ− −+ + − , receives the 

(possibly negative) cash flows derived from its financial hedging transactions, 

1 1( )t t tf s x− −− , and it pays out the cash outflows pre-committed in the financial plan, tη . 
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The new pre-order cash reserves, at the beginning of period t  but prior to placing new 

orders become 1 1 1 1ˆ= ( ) min( , ) ( )t t t t t t t t t t ty y s I q hI f s xλ ξ η− − − −+ + + − + − − .  

 ( iv ) The firm places new orders tq , to meet the demand in period 1t +  and 

decides for the composition of its financial instruments tx , to hedge for the commodity 

price risk. After placing the new order, tq , the cash reserves of the firm become 

= [ ] [ ] .t t t t t t t t ty s q y s q y s q+ −− − − −  

 ( v ) If the cash reserves of the firm at time t  (after ordering tq ) are positive, they 

are invested in liquid short-term assets and they grow at the risk free rate; hence in this 
case the initial cash reserves at 1t +  become 1ˆty +  = ( )(1 ) .f t t tr y s q+ −  On the other hand, 

if the cash reserves are negative (i.e., < 0t t ty s q− ), the firm faces financial distress, and 

it uses costly external funding. Our model of costly financial distress assumes a constant 
premium, > 0,r  in excess of the risk free rate, fr , that is paid proportionately to the 

amount of external financing used. Hence, the initial cash reserves at 1t +  are 

( )1ˆ 1 (1 )( ),t f t t ty r r y s q+ = + + −  which are negative. Thus in general, we can define 1ˆty + = 

( )1 [ ]f t t tr y s q ++ − − (1 )(1 )[ ] ,f t t tr r y s q −+ + − which simplifies to 1ˆty +  =  (1 )( )f t t tr y s q+ −

− (1 )[ ] .f t t tr r y s q −+ −  Hence, at the beginning of time 1t +  the firm pays 

(1 )[ ]f t t tr r y s q −+ −  for financial distress. At time t, the present value (when tq  is 

decided) of this cost of financial distress is given by 1= [ ] .t t t tFDC r y s q −
− −  

 Assuming a constant premium > 0r  for external financing implies that this 

short-term debt will be repaid in full with probability one. This assumption is reasonable, 

for example, when the firm's tangible assets, such as real estate and equipment, exceed its 

total liabilities by a large enough margin to cover the financial shortfalls implied by the 

short-term operational and financial decisions. In case of financial shortages, this firm 

will in all likelihood not go into Chapter XI bankruptcy proceedings, as it will be able to 

raise enough capital, and all short-term loans will be paid in full. Even if such a firm is 
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deemed to be not economically viable, its voluntary liquidation will bring enough cash to 

pay all debtholders in full. 

 In general, financial shortage, bankruptcy and liquidation refer to three different 

financial states of a firm. More precisely, a publicly traded firm experiencing a financial 

shortage (or a default) faces financial distress which may or may not lead to filing for 

bankruptcy under Chapter XI. If the firm's debt can be reorganized through private 

negotiations with the debtholders, then the firm does not file for bankruptcy and keeps 

operating. If private negotiations are not viable due to agency problems and informational 

asymmetries then a formal bankruptcy is filed (Senbet and Seward 1995). Ideally, the 

bankruptcy process liquidates the firm only if it is not economically viable. Formally, a 

firm is not economically viable if an alternative use for its assets is more valuable; in this 

case the firm becomes a target for liquidation. If the firm remains economically viable, its 

debt is formally reorganized by the court (Hotchkiss et al. 2008). Therefore, for publicly 

traded firms, liquidation (or the cease of operations) does not depend on the level of debt 

(or financial shortage) but on the economic viability of its operations. In summary, each 

of the three possible outcomes, a private reorganization, Chapter XI bankruptcy 

reorganization, or the liquidation of the firm, may or may not lead to the full payment of 

debt. Therefore, in our model, the constant positive premium for short-term financial 

shortfalls, > 0,r  is not driven by default probabilities, bankruptcy or liquidation, but 

instead the firm is willing to pay this premium due to the transaction costs and time lags 

associated with access to the capital markets. In Figure 4.3, we summarize the sequence 

of events, decisions and cash flows for the miller. 
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Figure 4.3: Sequence of Events, Decisions and Cash Flows for the Miller 

As it is suggested by Figure 4.3, below we describe the multi-period decision 

problem of the firm. For notational convenience, we denote the vector of state variables 
at the beginning of time ,t   as = [ , , ],t t t tS I y P  and we define = 1/(1 )frβ + . 

 For = 1,..., 1,t T −  

0,
( ) = max ( , | )t t t t t tq xt t

V S J q x S
≥

 

1 1. . = [ ]t t t ts t I I q ξ +
+ ++ −     (4.1) 

1 1 1 1

1 1

1= ( ) ( ) min( , )

( )

t t t t t t t t t t

t t t t

y y s q FDC s I q hI

f s x

λ ξ
β

η

+ + + +

+ +

− − + + + −

+ − −
(4.2)  

where,  

, | 1 1 11 1

1 1 1

( , | ) = [( ) min( , )

( ) ( )],

Q
t t t t t t t P P t t t t tt t t

t t t t t

J q x S s q FDC E s I q hI

f s x V S
ξβ λ ξ+ + ++ +

+ + +

− − + + + −

+ − +

= [ ]t t t tFDC r y s q −−  and  

( ) = , = [ ]T T T T T T T T TV S s I FDC FDC r y s I −− + . 

 We denote the value of the firm at the beginning of period t  as (.)tV . The first 

term in the objective, ,t ts q−  gives the cost of procurement and the following term, tFDC

t-1 t
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Decide qt+1 and xt+1 
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-h It+1 

+ 1ˆty + -ηt+1 

- r(1+rf)[ yt - stqt ]- 
-st+1qt+1  
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+(st+λ)min(It-1 +qt-1,ξt) 
+(f t-1- st) x t-1 
-h It 

+ ˆty -ηt 

- r(1+rf)[ y t-1 - s t-1q t-1 ]- 
-stqt  
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denotes the cost external financing. The last term describes the discounted value of the 

firm's future cash flows. The cash flows due to operations in period t  are given by 

1 1( ) min( , )t t t t ts I q hIλ ξ + ++ + − ; firm sells the minimum of demand and on-hand inventory 

at the current price ( ),ts λ+  and pays for holding cost for the left-over inventory. Cash 

flows from financial transactions are given by 1( )t t tf s x+− . Finally, the last term inside 

the expectation operator is the cost-to-go function. Constraints (4.1) and (4.2) in the 

model denote the inventory and cash flow balances, respectively. In the final period T , 

the firm does not place new orders and salvages the excess inventory at the current spot 

price. We start our analysis by showing that the objective function is concave in the 

decision variables.  

Lemma 4.5.1. (Convexity). ( , | .)t t tJ q x  is jointly concave in decision variables, tq  and 

,tx   for = 1,..., 1t T − . 

 Next, we underline the fact that financial hedging impacts firm value and the 

operating decisions only if there is a cost for financial distress. 

Lemma 4.5.2. (Hedging without FDC). When there is no financial distress cost, i.e., 

= 0,r   financial hedging is immaterial to firm value and operating decisions.   

 Under the risk neutral measure , |= [ ],Q
t t P P tt t

f E sτ ττ+ ++
 and the expected value of 

financial transactions is zero. Further, without a cost for financial distress, firm's cash 

flows are unaffected by financial hedging. In particular, when = 0,r  we are in the Miller-

Modigliani framework with no capital market frictions, hence buying and selling futures 

contracts do not affect the firm value. This argument can be generalized to other forms of 

correctly priced financial hedges. In the reminder of this section, we explore the 

interaction between financial distress cost, operating decisions and financial hedging 

under two common business models in practice. In Section 4.5.1, we discuss a make-to-
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order business plan where demand is known before committing to the purchase of wheat, 

and in Section 4.5.2 we analyze a make-to-stock business plan with uncertain demand.  

4.5.1. Make-to-Order (MTO) Business Plan 

In this section, we assume that the firm may observe the customer demand prior 

to committing for the production plan. In particular, when shipment and production lead 

times are relatively short compared to the delivery lead times of the customer orders, 

firms effectively operate in an MTO fashion. The following theorem shows the optimal 

production decisions of the firm when demand is known and deterministic over the 

planning horizon, and there is no cost for financial distress.  

Theorem 4.5.1. (Optimal Production without FDC). Suppose demand is known and 

deterministic over the planning horizon, and there is no financial distress cost, i.e., = 0r . 

Then, the optimal production plan is given by 1=t tq ξ∗
+ , and = 0,tI ∗  if 

1 1( ) 0t ts f hβ− −− + − ≤   and 1( ) 0t ts fβ λ−− + + ≥   for = 1,..., 1.t T −  

Theorem 4.5.1 shows that the firm exactly orders and produces for the next 

period's demand and does not carry inventory between the periods, if the spread of spot 

and futures prices satisfies two usual economic conditions, in each period. The first 

condition, ( ) 0t tf h sβ − − ≤ , states that the convenience yield is non-negative (assuming 

the holding cost is paid at the end of the period). This condition always holds in 

commodity markets since negative convenience yield creates arbitrage opportunities. The 

second condition, 1( ) 0,t ts fβ λ−− + + ≥  requires that the expected profit margin is non-

negative in each period; otherwise it is not profitable to meet the demand. Note that these 

results are independent of the financial hedging decisions when there is no financial 

distress cost. 

 Next, we investigate the impact of financial distress cost. We first consider the 

following single period MTO model, where for ease of exposure we assume that the 
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initial inventory level and cash outflows are set to zero, 1 1= 0, = 0, I η and there is no 

financial distress in the first period, 1 = 0FDC  . 
 

1 1 1 1 | 2 1 2 2 1 2 1 2 22 10,1 1
( ) = max [( ) min( , ) ( ) ( )]Q

P Pq x
V S s q E s q hI f s x V Sβ λ ξ

≥
− + + − + − +           (MTO 1)  

 2 1 2. . = [ ]s t I q ξ +−  

     2 1 1 1 2 1 2 2 1 2 1 2= ( )/ ( ) min( , ) ( )y y s q s q hI f s xβ λ ξ η− + + − + − −  

where,  

2 2 2 2 2 2 2 2 2( ) = , = [ ]V S s I FDC FDC r y s I −− +  

Theorem 4.5.2. (Optimal Production with FDC and without Hedging). Suppose the 

demand is known and deterministic, and the firm operates for a single period with no 

financial hedging. Then, when there is a cost for financial distress > 0r  , the firm  

(i) orders strictly less than the future demand, i.e., 1 2< ,q ξ∗   if  

                  2 1 1 1 2 2 20
( ) = ( ) ( / ) ( ) < 0

b
a s f r s s s dsξ β λ β β λ φ− + + + − + +∫                  (4.3) 

    where , 
1

1 1 2 1
2

= / , = / ,b s yκ β λ κ η β
ξ

+ − −  

(ii) and exactly orders for the future demand, i.e., 1 2=q ξ∗ , otherwise. 

 Theorem 4.5.2 describes the conditions under which it is not economical to meet 

all of the future demand, when there is a risk of incurring financial distress cost. In 

condition (4.3), 2( )a ξ  represents the marginal change in the firm value when 1 2=q ξ . 

Hence, if 2( )a ξ  this is less than zero, the manager should order less than the future 

demand, and otherwise it is optimal to meet all of the demand. Note that the sum of first 

two terms in 2( )a ξ  is non-negative by assumption, and the third term may be either 

positive or negative depending on the net cash transfers, future demand, sales margin and 

current spot price. The argument of the integral in 2( )a ξ  represents the profit margin of 

the firm at 1t +  for a particular realization of the future spot price 2s . When the future 
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spot price is less than b , the firm faces financial distress and pays a premium r  for 

external financing. 

 The financial state of the firm is one of the key determinants of the financial 

distress threshold, b . The parameter 1κ  denotes the pre-committed net cash outflows of 

the firm, i.e., cash transfers 2 ,η  net of pre-order cash reserves 1/y β . In particular, if the 

net cash outflows are very high, then the firm faces financial distress for almost all the 

future spot price realizations. In this case b  is very high and the integral term in (4.3) is 

positive, so the firm is unlikely to under-produce. On the other extreme, if the net cash 

outflows are very low, then the firm is unlikely to face financial distress in the future. So, 

the integral term in (4.3) is close to zero and the firm does not under-produce again. Only 

for moderate levels of net cash outflows, the integral term can be negative and the firm 

chooses an optimal quantity less than the current demand.  

 So far we have identified the optimal operating policy of the firm when the 

managers engage in no financial hedging transactions. In the following two results, we 

examine the impact of financial hedging on the operating decisions and firm value, when 

there is a cost for financial distress. First, we identify the optimal hedging policy.  

Theorem 4.5.3. (Optimal Hedging). Suppose the demand is known and deterministic, and 

the firm operates for a single period. Under a positive financial distress cost, if the firm 

decides to order and produce 1q  then it is optimal to short 1 1=x q∗  units of futures 

contracts with futures price 1. f  This hedging policy completely eliminates the price risk.  

 Theorem 4.5.3 shows that the optimal hedging decision is intimately linked to the 

operating plans. At = 1t , the firm commits to 1q  which will be sold at = 2 t at an 

uncertain price 2 .s λ+  By shorting 1q  units of futures contracts at = 1t  the firm 

effectively fixes the future sales price to 1 .f λ+  Hence, the price risk associated with 

future sales is eliminated. 
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Theorem 4.5.4. (Joint Optimal Hedging and Production). Suppose demand is known and 

deterministic, and the firm operates for a single period. Then, under a positive financial 

distress cost, it is optimal to produce 1 2=q ξ∗  and hedge 1 2=x ξ∗ . 

 Theorem 4.5.4 indicates that under the optimal financial hedging policy, the 

under-investment problem in Theorem 4.5.2 can be totally eliminated. That is, the firm 

always produces to meet the demand, regardless of its financial status. Note that, 

financial hedging may not totally eliminate the financial distress cost. Indeed, hedged 

firm may still need to pay for financial distress, but it is optimal to completely hedge for 

the price risk. As a result, financial hedging, when optimally integrated with the operating 

decisions, enables the firm to increase its output level and generate more value for the 

shareholders. 

4.5.2   Make-to-Stock (MTS) Business Plan 

 In this section, we investigate the optimal operating and financial hedging 

decisions of the firm when both demand and price are uncertain. As in the MTO case, we 

focus on a single-stage problem involving two periods only. The firm commits for wheat 

at the beginning of the current period, and demand is realized at the beginning of the next 

period. Excess demand is lost and excess inventory is salvaged at the current spot price. 

The single-stage MTS model is given below.  

1 1 1 1 , | 2 1 2 2 1 2 1 2 22 2 10,1 1
( ) = max [( ) min( , ) ( ) ( )]Q

P Pq x
V S s q E s q hI f s x V Sξβ λ ξ

≥
− + + − + − +        (MTS 1) 

2 1 2. . = [ ]s t I q ξ +−

2 1 1 1 2 1 2 2 1 2 1 2= ( )/ ( ) min( , ) ( )y y s q s q hI f s xβ λ ξ η− + + − + − −  

where,  

2 2 2 2 2 2 2 2 2( ) = , = [ ]V S s I FDC FDC r y s I −− + . 
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In this section, we denote the probability density and cumulative distribution 
functions of the demand by 

2
(.)ξφ  and 

2
(.)ξΦ , respectively. Further, for notational 

convenience, we omit the subscripts for quantity and hedging decision variables. The 

following lemma describes a benchmark result for the MTS case when there is no 

financial distress cost. 

Lemma 4.5.3. (Optimal Production without FDC) Suppose the firm operates for a single 

period under both stochastic demand and price. Then, when there is no financial distress 

cost, i.e., = 0r , necessary and sufficient optimality condition is given by:  
               | 2 1 22 1

[ ] ( ) ( ) = 0Q
P PE s s h h qξβ β β λ− − + + Φ ,                   (4.4) 

and the optimal quantity | 2 11 12 1 1 1
2 2

[ ]
= ( ) = ( )

( ) ( )

Q
P Pnv

E s s f sq
h hξ ξ

β βλ β βλ
β λ β λ

− −
− + − +

Φ Φ
+ +

.  

 When there is no cost of financial distress, the firm chooses a newsvendor-type 

optimal quantity which depends on the spread of spot and futures prices, 1 1f sβ − . As the 

futures price increases, the firm is more likely to sell at a higher price and hence the 

optimal order quantity increases. We also refer to nvq  as the first-best production quantity 

(operating level) of the firm. Note that, since the convenience yield is non-negative, i.e., 

1 1 0s h fβ β+ − ≥ , nvq  is finite. Next, we quantify the impact of financial distress cost in 

the MTS framework.  

Theorem 4.5.5. (Optimal Production with FDC) Suppose the firm operates for a single 

period under both stochastic demand and price, with no financial hedging. And, the 

probability of incurring financial distress is strictly between zero and one when the firm 

orders for the first-best production quantity, nvq . Then, when there is a positive financial 

distress cost, i.e., > 0r , the firm always under-produces compared to nvq , i.e., < nvq q∗ .   

 When there is no risk of incurring FDC, the marginal benefit of an additional unit 

is zero at nvq . However, if there is a risk of incurring FDC, when committed to the first-
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best production quantity, then the marginal benefit of an additional unit is negative, since 

it increases the firm’s exposure to financial distress risk. Hence, the firm would decrease 

its production level below its first-best level, nvq , so as to balance the risk of financial 

distress and operating profits. The following theorem characterizes the optimal hedging 

decision of the firm.  

Theorem 4.5.6. (Optimal Hedging). Suppose the firm operates for a single period under 

both stochastic demand and price. Then, under a positive financial distress cost, if the 

firm decides to order and produce q units, it is also optimal to short =x q∗ units of 

futures contracts with futures price 1.f  This hedging policy completely eliminates the 

price risk.  

Theorem 4.5.6 shows that, similar to the MTO case, it is optimal to completely 

hedge for the price risk. Substituting for the optimal hedging policy, (MTS 1) can be 

stated as a function of the quantity decision only: 
1 1 1 1 1 220

1 1 1 2 22

( ) = max ( ) ( ) [ ]

[ / ( / ) ( )[ ] ]
q

V S s q f h E q

rE y f s q h q

ξ

ξ

β λ λ ξ

β λ β λ ξ η

+

≥

+ −

− + + − + −

− + + − − + − −

Next, we examine the operating decisions of the firm under the optimal financial 

hedging plan.  

Theorem 4.5.7. (Joint Optimal Policy). Suppose the firm operates for a single period 

under stochastic demand and price; and there is a positive financial distress cost. Let 2
wξ  

denote the lowest (worst) demand scenario. Then, under the optimal hedging policy, the 

optimal quantity fq  is  

 (i) equal to the first-best operating level nvq , if  

1 1 1( / ) nvf s qκ λ β≥ + −  or 1 1 1 2( / ) ( )nv wf h s q hκ β λ ξ≤ − − + +  

 (ii) and less than the first-best operating level nvq , otherwise. 
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If the firm's net cash outflows are too high to be covered by the revenues from 

operations, even when it sells all of the first-best operating quantity nvq , i.e., 

1 1 1( / ) nvf s qκ λ β≥ + − , then the firm does not deviate from its first-best operating plan. In 

this case, since the firm is guaranteed to face financial distress at the first-best operating 

level, under-production (producing less than nvq ) does not help to reduce the firm's 

exposure to financial distress risk. Similarly, if the firm's net cash outflows are low 

enough to be covered by the revenues, even under the worst-case demand scenario, 

i.e., 1 1 1 2( / )( )nv wf h s qκ β ξ≤ − − − , then the firm never uses external financing and chooses 

the first-best operating level, nvq .  

On the other hand, if 1κ  is between these two cases, then the chances of incurring 

financial distress cost is strictly between 0 and 1, when the firm commits for nvq . 

Consequently, in this case, a marginal reduction in the quantity commitment of the firm 

reduces the firm's exposure to financial distress, and hence the firm chooses a more 

conservative operating plan by under-producing. As in the MTO case, the financial state 

of the firm plays a key role in the operating decisions under the optimal hedging policy. 

Next, we discuss the impact of hedging on the optimal operating plans.  

Theorem 4.5.8. Suppose the firm operates for a single period under both stochastic 

demand and price. Let q∗  be the optimal quantity when there is a positive financial 

distress cost and there is no hedging. Then, nv fq q q∗≥ ≥  .   

 Theorem 4.5.8 shows that financial hedging reduces the firm's exposure to 

financial distress and enables it to adopt more aggressive production plans. However, 

unlike the MTO case, it may not be possible to completely eliminate the under-

production problem.  
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4.6.   CONCLUSION 

 In this chapter, we examine the joint operating and financial hedging decisions of 

a shareholder-value maximizing firm, with costly financial distress. Although our 

research is motivated by the flour milling industry, our findings can be easily generalized 

to other commodity processor firms which are exposed to fluctuations in commodity 

prices. As it is well known in the finance literature, in the absence of frictions, engaging 

in financial hedging is a neutral proposition. That is, it should not affect the optimal 

production plan, and it does not create value for firm's shareholders. However, when the 

firm faces capital market frictions, such as in our case costly financial distress, financial 

hedging can contribute to shareholder-wealth creation. Our findings show that the cost of 

financial distress forces firms to adopt more conservative operating plans by under-

producing with respect to their first-best production levels. We first quantify this under-

production problem, and then illustrate how financial markets can be used to mitigate it 

and generate more wealth for the shareholders.  

 We show that in a single-period MTO production environment, the risk of 

incurring financial distress, due to commodity price fluctuations, may deter the firm from 

meeting all customer orders especially when the firm’s planned cash outflows are well 

balanced with the operating profits. We illustrate that the financial distress risk due to 

commodity price fluctuations can be totally eliminated by taking a short position in the 

futures market, equivalent to the production commitments. Consequently, such a 

financial hedging policy changes the optimal operating decisions, and further enables the 

firm to meet all the future demand. In other words, the under-production problem in an 

MTO production environment can be totally eliminated by financial hedging. 

 Similarly in an MTS production environment, with demand and price 

uncertainty, financial distress risk may lead the firm produce less than the first-best 
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production level. In this case, due to demand uncertainty, it is not possible to completely 

eliminate the financial distress risk and the allied under-production problem by trading in 

the futures market. However, we show that hedging for the price risk still adds value to 

the firm by reducing the firm's exposure to financial distress, and mitigating the under-

production problem.  

 Maximizing firm value, defined as the total properly discounted value of 

expected cash flows, is a central concern for the managers of publicly traded companies. 

In this chapter, we provide a model, within the value-framework of finance, which links 

the financial risk management and the operational decisions of a value maximizing firm, 

under the presence of capital market imperfections. An overarching implication of our 

analysis is that publicly traded firms may significantly increase their market value, and 

generate more wealth for their shareholders by effectively integrating their financial risk 

management and production decisions. We show that a coordinated financial hedging and 

operating plan contributes to shareholder-wealth creation (1) by reducing the firm's 

exposure to financial distress risk and mitigating the corresponding costs, and (2) by 

enabling the firm to operate at a higher level of output. 
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Chapter 5 

Conclusions and Future Work  

In this dissertation, we explore the effective integration of risk management and 

operational decisions so as to improve the firm value and profits, and to create more 

wealth for the shareholders. We present analytical models investigating the value of 

various operational and financial hedging strategies commonly implemented in practice. 

Our results demonstrate that these hedging strategies, when effectively integrated with 

the operating plans, may significantly reduce the firms’ exposure to business 

uncertainties and allied risks, and hence help to create more value.  

The second chapter of my dissertation focuses on the benefits of process and 

operational flexibility and their interaction in a multi-period MTO production 

environment. We observe that both process and operational flexibility create an 

operational hedge against the demand fluctuations and the associated risk of backlogging, 

through increasing the effective processing capacity of the firm by enabling dynamic 

capacity reallocations. We show that the value of process flexibility depends on the 

operating policies implemented in the production floor, the variability of product demand 

and the capacity availability of the firm as well as the length of the planning horizon. 

Indeed, our findings demonstrate that process flexibility may not only be used to hedge 

against the demand uncertainty, but may also be employed to protect against possible 

suboptimal operating decisions in the future. In particular, myopic operating policies, 

which are common in practice, can be hedged through adopting more process flexibility 

prior to the beginning of the sales season. Moreover, we demonstrate that operational 
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flexibility is most valuable when demand and capacity is well-balanced and demand 

variability is high.  

In this chapter, we have assumed that product demand is the only source of risk in 

the supply chain. We believe that an interesting and fruitful research direction is to 

investigate the value of capacity flexibility when there are other sources of risks and 

uncertainties associated with capacity, competition and technology.  

In the third chapter, we focus on operating and investment strategies for a 

financially constrained startup firm when making short-term production and long-term 

investment decisions under bankruptcy risk. Our results highlight an interesting 

operational hedging behavior between the long-term process investment decisions and the 

short-term production commitments of the firm. That is, a change in the process 

investment policy of the startup is always accompanied by a counter-action in the 

production decisions. We show that aggressive (conservative) investment plans are 

always hedged through aggressive (conservative) production decisions.  

In particular, when faced with stochastic bankruptcy risk, the startup firm 

sacrifices some short-term profits by deviating from its first-best production plan (i.e., the 

monopoly quantity). In the conservative case, the firm under-produces so as to allocate 

more cash to process investment while controlling the survival chances. Further, 

depending upon the competitor’s cost, startup’s technological performance and aggregate 

demand, the firm may also invest aggressively by increasing the process investment 

amount above the expected monopoly profits. In this case, the startup also produces more 

than the monopoly level to cover the higher bankruptcy risk due to the aggressive process 

investment plans. We also identify and analyze two main factors driving aggressive 

behavior in startups: (1) the existence of positive NPV investment opportunities and (2) 

the immediate economical viability of the firm.  
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Further, we show that startup firms optimally adopting aggressive (conservative) 

policies go bankrupt (survive) with more (less) than a probability of 50%. Consequently, 

under stochastic demand, we establish the optimal operating decisions and the allied 

survival chances as an appropriate measure of startup’s risk preferences. From this 

perspective, the existence of aggressive policies is interesting and consistent with 

empirical observations claiming that an average startup firm goes bankrupt and, only a 

small portion of the new firms eventually survive and grow (Gompers and Lerner 2004, 

Shane 2007).  

In this third chapter, we have specifically studied investment in strategic process 

improvement which is aimed at unit cost reduction. We have excluded decisions such as 

new product development and brand growth. Further, startups in our model do not 

consider exit strategies, e.g., mergers or acquisition choices, which are also central to 

process investment decision. It would be useful to explore how investment in process 

development change without financially risking the startup’s survival when the startup’s 

objective is to signal a potentially strong market presence in order to look more attractive 

for a takeover. This could alter the startup’s decisions, and hence, yield different results. 

We also do not consider venture capital (VC) funded startups which may receive multiple 

rounds of funding. Exploring the interaction between the startup and the venture 

capitalist, when making short-term and long-term business plans, is also a very promising 

future research direction. 

In the fourth chapter of my dissertation, we extend our analyses to study the 

integrated operating and financial hedging decisions of a shareholder-value maximizing 

publicly traded firm, with costly financial distress. Similar to the effect of bankruptcy risk 

in Chapter 3, costly financial distress changes the optimal operating decisions for 

publicly traded firms, and leads them to choose more conservative operating plans via 
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under-producing with respect to their first-best production levels. We demonstrate that 

financial hedging policies, when appropriately integrated with the operating plans, 

mitigate this under-production problem and enable firms adopt more aggressive 

production plans by reducing the firm’s exposure to financial distress risk.  

This research contributes to the existing operations management literature, by 

studying the risk management decisions of a public corporation within the value 

framework of finance; hence our findings do not require any specific assumptions about 

the investors' utility functions. Further we add to the literature by explicitly examining 

the impact of costly financial distress on hedging and operating plans. 

In summary, integrating risk management and operating decisions is a new and 

promising research direction which offers valuable managerial insights in the field of 

operations management. This dissertation is one of the first works in this field, and it 

provides a better understanding of integrated risk management within the framework of 

established firms as well as small and start-up businesses. We strongly believe that our 

findings and analyses can be extended for many other business cases so as to develop 

new managerial insights. 
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Appendix A 

Managing Capacity Flexibility in Make-to-Order Production 
Environments 

A.1. Explanation of Notation and Cut Calculations 
krt

i
,,π  = optimal dual price in period t for replication r under scenario k, for the balance  

   constraint for family i 
krt

j
,,γ  = optimal dual price in period t for replication r under scenario k, for the

capacity constraint for line j 
krt

ji
,,

,λ  = optimal dual price in period t for replication r under scenario k, for the design              
    constraint for assigning family i to line j 

krt
l

,,ρ  = optimal dual price in period t for replication r under scenario k, for the cut
    constraint l 

rt ,α  = scalar contributing the cut intercept  
),...,( ,

,
,
1,1

, rt
NM

rtrt μμμ = cut gradient term 

),...,( ,,
1

, rt
M

rtrt βββ  = cut gradient term 
Then, during the backward pass of the algorithm in replication r and period t, the 
following cut is generated. 
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Rearranging the terms we obtain:  
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where 
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A.2. Computational Settings for the Decomposition Method 

While constructing an empirical scenario tree and the associated approximating 

problem (EDAM) we use a sample size of 100, i.e., |S| = 100. Then, while solving the 

EDAM, with the algorithm of Section 2.4.2, the replication limit R is set to 500. We 

observed that the improvement in the lower bound is not significant after 500 iterations. 

For lower bound estimation we used ν  = 30, that is we have generated 30 i.i.d. sample 

scenario trees and the associated EDAMs and solved each model generating 30 i.i.d. 

lower bound estimates. Then, to estimate the cost of the feasible policy we used η  = 

20,000 demand sample paths. We also employed Latin Hypercube Sampling, while 

generating i.i.d. sample scenario trees, for variance reduction purpose. 
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Appendix B 

Production, Process Investment and Survival of Debt Financed Startup 
Firms 

B.1. Proofs 

Proof of Proposition 3.3.1:  

Substituting for the second period monopoly profits, and suppressing the 

subscripts and the superscripts yields the model: 
2

, 0

(1 )( ))( (1 ) ) (1 ) ( )
2

. . ( (1 ) ) (1 ) 0
q A

r c Amax q r c q r A

s t q r c q r A

θ μπ θ

θ
≥

− + −
= − − + − + +

− − + − + ≥
 

Now we observe that the single stage problem is separable in q and A, and can be written 

as: 

, 0
( ) ( )

. . ( ) /(1 )
q A
max f q g A

s t A f q r

π
≥

= +

≤ +
 

where ( ) ( (1 ) )f q q r c qθ= − − +  and 2(1 )( ))( ) (1 ) ( )
2

r c Ag A r A θ μ− + −
= − + + . 

Since f(q) is concave, it is maximized at * (1 )
2

r cq θ − +
= . Maximizing f(q) also 

maximizes the right-hand side of the survival constraint, hence *q  gives the optimal 

quantity decision. Following, by substituting * (1 )
2

r cq θ − +
=  into the survival constraint, 

we obtain the upper bound on the first period investment as 
2

max
( (1 ) )=

4(1 )
r cA
r

θ − +
+

.  

Here g(A) is convex and the optimal solution is a boundary solution. Hence, the 

optimal investment amount can be found by evaluating the g(A) function for the values of 

0 and Amax and choosing the quantity that maximizes g(A). More explicitly: 
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2

2
2

max

( (1 ) )(1 )( ))
( (1 ) ) 4(1 )( ) ( )

4 2

r cr c
r c rg A

θθ μ
θ

− +
− + −

− + += − +  , 
2( (1 ) )(0)

4
r cg θ − +

=  and  

2

2
2
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2 2

( (1 ) )(1 )( ))
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2 2
( (1 ) ) 8 ( (1 ) ) 16.
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r crg A g

r c r c

θθ μ
θ
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− +
− + −

− ++Δ = − = −

= − + + − + −

So the firm invest Amax if 0bcΔ ≥ . Finally, substituting for the optimal policy we obtain: 

2max

*
2

(1 )( ))( ) 0
2

( (1 ) ) /
2

bcr c A if

r c o w

θ μ

π
θ

− + −⎧ Δ ≥⎪⎪= ⎨
− +⎪

⎪⎩
� 
Proof of Proposition 3.3.2: 

Following the developments in the proof of Proposition 3.3.1, when the return on 

investment is uncertain, first stage problem can be stated as: 
2

2 1

, 0

( (1 ) ( , ))( (1 ) ) (1 ) ( )
4

. . ( (1 ) ) (1 ) 0
q A
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∫

Then, 
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2 2 2 2
max max

max
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2 2

2 2 2
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Finally, substituting for the optimal policy we obtain: 
2 2 2 2

max max

*
2
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tur c A r A if
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θ μ σ

π
θ

⎧ − + − + +
Δ ≥⎪⎪= ⎨

− +⎪
⎪⎩  

 � 
Proof of Proposition 3.3.3:  

i) Since a Cournot game is played in the second period, startup’s and competitor’s 

equilibrium quantities are given by ( )2 1
2

2(1 ) ,
3
r c A

q
θ ξ β+ − +

=  and 

2 1(1 ) ( , ) 2
3c

r c Aq θ β ξ+ + −
= , respectively.  Consequently, startup’s profit in the second 

period is: 
2

2 1
2 1

( 2(1 ) ( , ))( , , )
9
r c AA θ ξ βπ ξ β + − +

= . 

Hence, substituting for the expected second period profit, the first stage problem 

becomes: 
2

2
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∫  

Then, following the developments in the proof of Proposition 3.3.2 above, it is 

still optimal to produce the monopoly level and, the investment threshold and optimal 

profits are obtained as follows: 
2

max
max max

( 2(1 )( ))( ) (1 ) ( )
9
r c Ag A r A dθ ξ μ φ ξ ξ+ − + −

= − + + ∫ ,

2( 2(1 ) )(0) ( )
9

r cg dθ ξ φ ξ ξ+ − +
= ∫   and 
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So the firm invest Amax if 0cΔ ≥ . Finally, substituting for the optimal policy we obtain: 
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� 
Proof of Corollary 3.3.1: 

Note that cΔ  is linear increasing in λ . Hence, solving 0bc cΔ − Δ =  for λ , gives 

the desired result. (We assume parameters guarantee positive quantities and positive 

second period cost, i.e., 2q , cq  and 2c  are non-negative.) � 

Proof of Proposition 3.4.1: 
Below, we evaluate the expectation step by step and simplify the problem (3.3): 

1
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where 1 1 1{ | ( ) }B ε π ε π= ≥ . 
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+

∫ ∫

∫

1
1 1

1

1 1 1 1 1 1 1 1
, 0

2 2 2 2 2 2
1 1 1 1 1 1 1

1
1

max {( ( , ) ) ( ) }

( ) 2( ) ( ) (1 )( )[ ](1 ( ))
9

q A
E p q c q r c q A A

kc kc k A k A r c q A q
q

ε

εϑ

ε

τ θ λ θ λ μ μ σ πα θ

≥
− − + −

+ + − + + − + + + + +
+ − + −

1 1

1

1 1 1 1 1
, 0

2 2 2 2 2 2
1 1 1 1 1 1 1

1
1

max ( ) ( 1)( )

( ) 2( ) ( ) (1 )( )[ ](1 ( ))
9

q A
q q r c q A

kc kc k A k A r c q A q
qεϑ

θ

τ θ λ θ λ μ μ σ πα θ

≥
− − + +

+ + − + + − + + + + +
+ − + −

 

Finally, suppressing the subscripts and superscripts, we obtain the result: 
 

1

, 0 , 0

2 2 2 2 2 2

max ( , ) max ( ) ( 1)( )

( ) 2( ) ( ) (1 )( )[ ](1 ( ))
9

q A q A
f q A q q r cq A

kc kc k A k A r cq A q
qεϑ

θ

τ θ λ θ λ μ μ σ πα θ

≥ ≥
= − − + +

+ + − + + − + + + + +
+ − + −

Recall that 1{( ( , ) (1 ) ) }m m mE p q r c qπ ε= − + , ( (1 ) )
2m

r cq θ − +
= , 

(1 )
m

mA
r

π π−
=

+
. First, we 

partition the feasible decision space into the following four regions: 
(i) mq q≤   and mA A≤  

(ii) mq q≤  and mA A≥  

(iii) mq q≥  and mA A≤  

(iv) mq q≥   and mA A≥  

Let 
2 2 2 2 2 2( ) 2( ) ( )[ ]

9
kc kc k A k AD τ θ λ θ λ μ μ σα + + − + + − + +

= , then at the optimality 

it must hold that: 

2

( , ) (1 )( ) (1 )2 ( 1) ( )*(1 ) 0f q A r cq A r Aq r c D q
q q q

π πθ ϕ θ∂ + + + + +
= − − + − + − − =

∂
. 
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Following, it is easy to observe ( , )f q A
q

∂
∂

> 0 for every decision vector in region (ii) and 

( , )f q A
q

∂
∂

< 0 for every decision vector in region (iii). Hence the optimal policy should be 

either in region (i) or (iv). This concludes the desired “if and only if” argument in the 

proposition. 

Note that the proof does not depend on the convexity of ( , )f q A . Indeed, ( , )f q A  

is not generally convex and in this proof, we don’t address the optimal investment, A*. 

Recall that the joint optimization of A and q is not tractable analytically. Indeed, numeric 

analyses show that at the optimality, when both A and q varied simultaneously, optimal 

policy may be either in region (i) and (iv). � 

Proof of Proposition 3.4.2: 

Recall that the demand shock tε  (t = 1, 2) has a normal probability density 

function, (.)ϕ , with mean zero and variance v2. It is sufficient to show that the argument 

of the survival probability, (1 )
(1 )

r A
q r c

q
x π

θ
+ +

+ − + += ,  is less (greater) than or equal 

to zero if and only if the optimal operating policy is aggressive (conservative). Since 

(1 )
2m

r cq θ − +
= , we can state the argument of the survival probability as 

(1 )
2 m

r A
q q

q
x π + +

+ −= . Finally also observe that the first order optimality condition for 

q, i.e., ( , ) 0f q A
q

∂
=

∂
, implies that 

2

1
qA

r
π−

≥
+

 if mq q≥ , and 
2

1
qA

r
π−

≤
+

 if mq q≤ . 

Suppose the optimal operating policy is aggressive. Then, by definition mq q≥

and 
2

1 m
qA A

r
π−

≥ ≥
+

. Consequently, the first two terms of x is larger than 2 mq  and hence, 
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0x ≥ . Now, suppose the optimal operating policy is conservative. Then, by definition 

mq q≤  and 
2

1 m
qA A

r
π−

≤ ≤
+

. So, the first two terms of x is less than 2 mq  and hence, 

0x ≤ . 

Next, we prove the only if part of the argument. Consider an optimal operating 

policy (A, q) such that x = (1 )
2 0m

r A
q q

q
π + +

+ − ≥ , i.e., the survival chances are less than 

50 percent. Now, suppose this optimal operating policy is conservative, i.e., mq q≤  and 

2

1 m
qA A

r
π−

≤ ≤
+

. Then, (1 )r A
q

qπ + +
≤  and hence, (1 )

2 0m
r A

q q
q

π + +
+ − ≤ . So, by 

contradiction, the policy should be aggressive. The conservative case can be proven 

similarly. � 

 
Proof of Corollary 3.4.1 and Corollary 3.4.2:  

 Immediate economic viability, 0mπ π− > , implies that 0
(1 )

m
mA

r
π π−

= >
+

. When 

there are no investment opportunities firm has to set 0A =  and hence mA A< . From 

Proposition 3.4.1, this implies that the optimal policy should be in region (i) and mq q< . 

When there are investment opportunities, i.e., 0A ≥ , the optimal solution may be in 

either region (i) or (iv). Indeed, in Section 3.4.2, we provide various numerical examples 

for both cases.  

 On the other hand, if 0mπ π− < , then 0
(1 )

m
mA

r
π π−

= <
+

. In this case, regardless of 

the existence of investment opportunities mA A>  and hence, the optimal policy should lie 

in region (iv) and mq q> . � 

 
Proof of Proposition 3.5.1: 

(i) Let ( )f q = ( )q c qθ − − , and 2( ))( ) ( )
2

c Ag A A θ μ− −
= − +  . Then the maximization 

problem can be stated as:  
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,
max ( ) ( )

. . (1)
( ) (2)

, 0

q A
f q g A

s t A L cq
A f q
A q

+

≤ −

≤

≥

Or equivalently,    { }
max ( ) ( )

. . min ( ),

, 0

f q g A

s t A f q L cq

A q

+

≤ −

≥

 

Solving ( )f q L cq= −  for q, we obtain  
2

1
4

2 2
L

q
θ θ −

= −   and 
2

2
4

2 2 m
L

q q
θ θ −

= + ≥ . 

Then, if 1 mq q≥ , the debt constraint never binds as shown in Figure A.1. Hence 

Proposition 3.3.1 applies. More specifically, this case can be stated as:  
2 4

2 2 2
L cθ θ θ− −

− ≥  
2 2

max4 m
c

L cq A
θ −

≥ = + . This proves the first part of the 

proposition. 

Figure A.1: An Illustration of the Debt Constraint 

ii) Suppose mL cq< , then the debt constraint should always bind since any excess cash 

can be used to increase production and increase profits.  

iii) Suppose maxm mcq L cq A≤ ≤ +  and the return on investment is very close to zero. 

Then, the firm simply produces up to the monopoly level and does not use the rest of the 

debt capacity for investment. Hence, the debt capacity constraint may not be tight. � 

Amax 

cqm 
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Proof of Corollary 3.5.2:  

From the proof of Proposition 3.3.1, when there is no debt capacity, investment threshold 

is given by: max( ) (0)g A gΔ = − . When there is an explicit debt capacity, L, then for any 

feasible of production policy q, maximum investment budget is given by: 

{ }max max( , ) min ( ),lA q L f q L cq A= − < . Next, since g(.) is increasing in A,  

max( , ) ( ) (0)l
lq L g A gΔ = − ≤ Δ . � 
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B.2. Computational Procedure 

We work with problem (3.3): 

1
1 1

1

*
1 1 1 1 1 1 1 1

, 0

2
2 1 0

1 1, ,

max {( ( , ) ) ( ) }

( 2(1 ) ( , ; )){ | ( ) }
9

q A
z E p q c q r c q A A

r c A AE

ε

ξ β ε

ε

θ ξ βα π ε π

≥
= − − + −

+ − +
+ ≥

Since this optimization problem has only two decision variables, we implement a 

search algorithm, in C++, to find the optimal decisions for each set of parameter values. 

This algorithm is available from the authors on request. For example, in order to 

construct Figure 3.6, we first fix μ and then solve (3.3) optimally for varying values of 

λ , and we determine the critical value(s) of λ after which the firm switches its optimal 

investment strategy. Then, by connecting these critical values with a smooth line we 

arrive at Figure 3.6. 
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Appendix C 

An Integrated Approach to Commodity Risk Management 

C.1. Proofs 

Proof of Lemma  4.5.1:  

Final period's objective, 1 1 1( , | .),T T TJ q x− − −  is concave in decision variables 

1 1( , )T Tq x− − . Therefore, by preservation of concavity under maximization, ( , | .)t t tJ q x  is 

concave for = 1,..., 1t T − . � 

Proof of Lemma  4.5.2:  
This result follows from the fact that | 11

= [ ]Q
t P P tt t

f E s ++
. � 

Proof of Theorem 4.5.1: 

Under deterministic demand, final period's problem with no financial distress cost 

is given below (note that the cash reserves and financial hedging is immaterial to the firm 

value):  
1 1 1 1 101
( ) = max ( | )T T T T TqT

V S J q S− − − − −≥−
 

where 1 1 1 1 | 1 11
( | .) = {( ) min( , ) ( ) }Q

T T T T P P T T T T T TT T
J q s q E s I q s h Iβ λ ξ− − − − − −−

− + + + + −   and 

1 1= [ ]T T T TI I q ξ +
− −+ −  . 

Noting that | 11
[ ] =Q

P P T TT T
E s f −−

, the first partial derivative can be stated as: 

1 1
1 1 { > } 1 { }1 1 1 1

1

( | .) = ( ) ( ) .T T
T T I q T I qT T T T T T

T

J q s f h I f I
q ξ ξβ β λ− −

− − + − + ≤− − − −
−

∂
− + − + +

∂
 

Hence, 1 1=  T T Tq Iξ∗
− −−  if 1 1( ) 0T Ts fβ λ− −− + + ≥   and 1 1( ) 0T Ts f hβ− −− + − ≤ . 

By induction this result extends for = 1,..., 1.t T −  So, 1 2 1=q Iξ∗ −  and 

1= , = 0,t t tq Iξ∗ ∗
+   if 1( ) 0t ts fβ λ−− + + ≥   and 1 1( ) 0t ts f hβ− −− + − ≤  for = 2,..., 1.t T −  

Letting 1 = 0I  gives the desired result in the theorem. � 

Proof of Theorem 4.5.2: 
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 Substituting for 2 (.)V , and evaluating the expectation, the single period MTO 

model with no financial hedging becomes: 
1 1 1 1 101

1 1 1 1 2 1 1 201

| 1 1 1 2 1 2 2 1 2 22 1

( ) = max ( | )

max ( ) min( , ) ( )[ ]

1[ ( ) ( ) min( , ) ( )[ ] ]

q

q

Q
P P

V S J q S

s q f q f h q

r E y s q s q s h q

β λ ξ β ξ

β λ ξ ξ η
β

≥

+

≥

+ −

= − + + + − −

+ − + + + − − −

 

Now suppose 1 2 q ξ≥ then,  

1 1 1 1 1 1 2 1 1 2

| 1 1 1 2 2 2 1 2 22 1

( | ) = ( ) ( )( )
1[ ( ) ( ) ( )( ) ]Q

P P

J q S s q f f h q

r E y s q s s h q

β λ ξ β ξ

β λ ξ ξ η
β

−

− + + + − −

− − + + + − − −
 

Consequently, the first partial derivative is given by:  
1

1 1 1 2 2 20
1

(.) 1= ( ) ( ) ( )
aJ s f h r s s h s ds

q
β β φ

β
∂

− + − + − + −
∂ ∫ , 

 where 1 1 1 2 1 2 2

1

( )/= .y s q hq ha
q

β λξ ξ η− + − + + +  

 Then, since the convenience yield is non-negative, 1

1

(.) 0J
q

∂
≤

∂
. This implies that the 

optimal quantity cannot be larger than 2 .ξ   

Now suppose 1 2q ξ≤  then,  

1 1 1 1 1 1 1 | 1 1 1 2 1 22 1

1( | ) = ( ) [ ( ) ( ) ]Q
P PJ q S s q f q E r y s q s qβ λ β λ η

β
−− + + − − + + −  

Consequently, the first partial derivative is given by:  
1

1 1 1 1 2 2 20
1

(.) = ( ) = ( ) ( / ) ( )
bJ a q s f r s s s ds

q
β λ β β λ φ∂

− + + + − + +
∂ ∫ ,  

where 2 1
1

1

/= / .yb s
q

η β β λ−
+ −  

 Hence, when there is no financial hedging, the firm under-produces if  

2( )a ξ  = 1 1 1 2 2 20
( ) ( / ) ( ) < 0

b
s f r s s s dsβ λ β β λ φ− + + + − + +∫ . � 

Proof of Theorem 4.5.3: 

 For a given quantity decision, 1,q  the firm solves the following hedging problem: 
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1 1 1 1 1 1 2 1 1 2
1

( ) = max ( ) min( , ) ( )[ ]
x

V S s q f q f h qβ λ ξ β ξ +− + + + − −    

        | 1 1 1 2 1 2 1 2 1 2 1 2 22 1

1[ ( ) ( ) min( , ) ( ) ( )[ ] ]Q
P PE r y s q s q f s x s h qβ λ ξ ξ η

β
+ −− − + + + − + − − −    

 Since the hedging decision only impacts the financial distress term:  
1 1 1 1

1

( ) = arg min ( | .)
x

x q D x∗  

| 1 1 1 2 1 2 1 2 1 2 1 2 22 1
1

1= arg min [ ( ) ( ) min( , ) ( ) ( )[ ] ] .Q
P P

x
E y s q s q f s x s h qλ ξ ξ η

β
+ −− + + + − + − − −

Now suppose 1 2q ξ≤  then,  

1 1 1 1 | 1 1 1 2 1 1 2 1 22 1
1 1

1( ) = arg min ( | .) = arg min [ ( ) ( ) ( ) ] .Q
P P

x x
x q D x E y s q s q f s xλ η

β
∗ −− + + + − −    

 Following the first partial derivate is given by: 
1 1

1 2 2 20
1

( | .) = ( ) ( )
bD x f s s ds

x
φ∂

−
∂ ∫   if 1 1q x≤  , and  

1 1
1 2 2 2

1

( | .) = ( ) ( )
b

D x f s s ds
x

φ
∞∂

−
∂ ∫   if 1 1.q x≥  

 Observing that 1 1( | .)D x  is convex and 1 1
1

1

( | .) | = 0,q
D x

x
∂

∂
 the optimal hedging decision 

1 1( )x q∗  1= q . (The case for 1 2 ,q ξ≥  can be shown similarly.)  � 

Proof of Theorem 4.5.4: 

Substituting for the optimal hedging policy given in Theorem 4.5.3, we obtain the 

following maximization problem as a function of the quantity decision only:  
1 1 1 1 | 2 1 2 1 2 1 2 1 22 101
( ) = max {( ) min( , ) ( ) ( )[ ] }Q

P Pq
V S s q E s q f s q s h qβ λ ξ ξ +

≥
− + + + − + − −    

     | 1 1 1 2 1 2 1 2 1 2 1 2 22 1

1[ ( ) ( ) min( , ) ( ) ( )[ ] ]Q
P PrE y s q s q f s q s h qβ λ ξ ξ η

β
+ −− − + + + − + − − −    

1 1 1 1 1 201

1 1 1 1 1 1 2 2

= max ( ) ( )[ ]

1[ ( ) ( ) ( )[ ] ]

q
s q f q h q

r y s q f q h q

β λ β λ ξ

β λ λ ξ η
β

+

≥

+ −

− + + − + −

− − + + − + − −

1 1 1 1 201

1 1 1 1 1 2 2

= max ( ( ) ) ( )[ ]

[ / ( / ) ( )[ ] ]

q
f s q h q

r y f s q h q

β λ β λ ξ

β β λ β λ ξ η

+

≥

+ −

+ − − + −

− + + − − + − −
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Suppose 1 2q ξ≤  then, 

1 1 1 1 1 1 1 1 1 1 1 20 01 1
( ) = max ( | .) = max( ( ) ) [ / ( / ) ]

q q
V S J q f s q r y f s qβ λ β β λ β η −

≥ ≥
+ − − + + − − .  

Since 1 1( | .)J q  is increasing in 1, q the optimal quantity 1 2=q ξ∗ , for 1 2.q ξ≤    

Now, suppose 1 2q ξ≥  then,  

1 1 1 1 1 1 1 20 01 1

1 1 1 1 2 2

( ) = max ( | .) = max ( ( ) ) ( )

[ / ( / ) ( ) ] .

q q
V S J q f h s q h

r y f h s q h

β β λ ξ

β β β λ ξ η

≥ ≥

−

− − + +

− + − − + + −
 

In this case, 1 1( | .)J q  is decreasing in 1, q so the optimal quantity 1 2=q ξ∗ , for 1 2.q ξ≥  

Hence 1 2= .q ξ∗  �   

Proof of Lemma 4.5.3: 

 When = 0,r  financial hedging is immaterial to the operating decisions and the 

single stage problem can be stated as the following:  
1 1 1 1 , | 2 1 2 2 1 22 2 101
( ) = max {( ) min( , ) ( )[ ] }Q

P Pq
V S s q E s q s h qξβ λ ξ ξ +

≥
− + + + − −  

  Consequently, the necessary and sufficient optimality condition is given by: 

| 2 1 22 1
[ ] ( ) ( ) = 0Q

s sE s s h h qξβ β β λ− − + + Φ  and the optimal quantity =nvq  

| 2 11 12 1 1 1
[ ]

( ) = ( )
( ) ( )

Q
P PE s s f s

h h

β βλ β βλ
β λ β λ

− −
− + − +

Φ Φ
+ +

. Since the convenience yield is non-

negative, nvq   is finite. � 

Proof of Theorem 4.5.5: 

 Suppressing the superscripts and the subscripts (except for 1s  and 1P  ), the single 

stage problem can be stated as:  

 
1 1 1 1 1 1 , | 10 0
( ) = max ( | .) = max {( ) min( , ) ( )[ ] }Q

P Pq q
V S J q s q E s q s h qξβ λ ξ ξ +

≥ ≥
− + + + − −    

                                          , | 11
[( )/ ( ) min( , ) ( )[ ] ]Q

P PE r y s q s q s h qξβ β λ ξ ξ η+ −− − + + + − − −    

1 , | 10 0
= max ( | .) = max {( ) ( )[ ] }Q

P Pq q
J q s q E s q h qξβ λ λ ξ +

≥ ≥
− + + − + −    

                                           , | 11
[( )/ ( ) ( )[ ] ]Q

P PE r y s q s q h qξβ β λ λ ξ η+ −− − + + − + − −    
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Evaluating the expectations,  

1( | .) = ( ) ( ) [ ]J q s q f q h E qξβ λ β λ ξ +− + + − + −
1

10 0
[ / ( / ) ( )( ) ] ( ) ( )

q u Q
sr y s s q h q s dsdξβ β λ β λ ξ η φ φ ξ ξ+ + + − − + − −∫ ∫    

2
10

[ / ( / ) ] ( ) ( )
u Q

sq
r y s s q s dsdξβ β λ β η φ φ ξ ξ

∞
+ + + − −∫ ∫    

 where 1 1
1 2

/ ( / ) / ( / )( )( )= , = .y s q y s qh qu u
q q q

η β β λ η β β λλ ξ− + − − + −+ −
+

 Following, the necessary and sufficient optimality condition is:  
1

1 10 0

( | .) = ( ) ( ) ( ) [ / ] ( ) ( )
q u Q

s
J q s f h q r s s h s dsd

q ξ ξβ λ β λ β β φ φ ξ ξ∂
− + + − + Φ + − −

∂ ∫ ∫  

2
10

[ / ] ( ) ( ) = 0
u

q
r s s s dsdξβ β λ φ φ ξ ξ

∞
+ − +∫ ∫ . 

So, we want to show that 
=

( | .) | 0nvq q

J q
q

∂
≤

∂
   

First we define ε  such that:  
ˆ2

10 0ˆ {0, }
= arg max [ / ] ( ) ( )

q u Q
s

h
s s h s dsd

ε

ξ
ε λ

ε β φ φ ξ ξ
+

∈ +
− −∫ ∫  

 Then, from the definition of ε , it follows that:  
2 2

1 1= 0 0 0

1 (. | ) | [ / ] ( ) ( ) [ / ] ( ) ( )
q u uQ Q

nv s sq q q

J x s s h s dsd s s s dsd
r q

ε

ξ ξβ φ φ ξ ξ β λ φ φ ξ ξ
β

+ ∞∂
≤ − − + − +

∂ ∫ ∫ ∫ ∫
2 2

1 10 0
= ( ) [ / ] ( ) ( ) [ / ] ( )

u uQ Q
s sq s s h s ds q s s s ds

ε
ξξ β φ β λ φ

+
Φ − − + Φ − +∫ ∫    

2
2 10

2
1

2

= ( )( ( ) ( )) [ / ] ( )

( ) [ / ] ( )

uQ Q
s s

u Q
su

u q h q s s s ds

q s s h s ds

ξ ξ

ε

ξ

λ β φ

β φ
+

Φ Φ − Φ + −

+ Φ − −

∫
∫

2 2
2 1 1 10 2

= ( )( / ) [ / ] ( ) ( ) [ / ] ( )
u uQ Q Q

s s su
u s f s s s ds q s s h s ds

ε

ξβ β φ β φ
+

Φ − + − + Φ − −∫ ∫

2 2
1 10 0

2
1

2

= ( / ) ( ) [ / ] ( )

( ) [ / ] ( )

u uQ Q
s s

u Q
su

s f s ds s s s ds

q s s h s ds
ε

ξ

β φ β φ

β φ
+

− + −

+ Φ − −

∫ ∫
∫

2 2
10 2

= ( ) ( ) ( ) [ / ] ( )
u uQ Q

s su
s f s ds q s s h s ds

ε

ξφ β φ
+

− + Φ − −∫ ∫    
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2 2
10 2

( ) ( ) ( ) ( ) [ / ] ( )
u uQ Q

s su
q s f s ds q s s h s ds

ε

ξ ξφ β φ
+

≤ Φ − + Φ − −∫ ∫   

                            (Since 2

0
( ) ( ) < 0

u Q
ss f s dsφ−∫ ) 

                      2

0
( ) [ ] ( )

u Q
sq s f s ds

ε

ξ φ
+

≤ Φ −∫    (Since 1/f s hβ≤ +  ) 

< 0   (Since =f Es  ) 

Finally note that, when ordered for nvq , if the probability of incurring financial distress is 

equal to zero or one then, nvq  is optimal. � 

Proof of Theorem 4.5.6: 

 For given a given quantity decision 1q  , the sufficient optimality condition is 

given by: 

1 1
1 2 2 2 2 22 20 0

2
1 2 2 2 2 2 1 12 2011 1

1
1 1 2 2 2 2 22 20 1

1 2 2 2 2 2 1 12 21 2

[ ] ( ) ( )

[ ] ( ) ( ) = 0 < ,
( | ) =

[ ] ( ) ( )

[ ] ( ) ( ) = 0 > .

q u Q
s

u Q
sq

q Q
su

Q
sq u

r f s s ds d

r f s s ds d if x q
J x q

x r f s s ds d

r f s s ds d if x q

ξ

ξ

ξ

ξ

β φ φ ξ ξ

β φ φ ξ ξ

β φ φ ξ ξ

β φ φ ξ ξ

∞

∞

∞ ∞

⎧ −⎪
⎪

+ −⎪∂ ⎪
⎨∂ −⎪
⎪
⎪+ −⎪⎩

∫ ∫
∫ ∫

∫ ∫

∫ ∫

 

where 
2 1 1 1 1 1 1 2 2 1 1 1 1 1

1 2
1 1 1 1 1 1

/ ( / ) ( )( ) / ( / )= , = .y f x s q h q y f x s qu u
q x q x q x

η β β λ λ ξ η β β λ− − + − + − − − + −
+

− − −
 

 Observing that 1 1

1

( | )J x q
x

∂
∂

  goes to zero as 1x  approach to 1q , proves the desired result 

(note that 1 | 22 1
= [ ]Q

P Pf E s  ). �  

Proof of Theorem 4.5.7: 

 Recall that the single period model under the optimal hedging policy is given by:  
1 1 1 1 1 1 1 1 1 220 01 1

1 1 1 1 2 12

( ) = max ( | .) max ( ) ( ) [ ]

[( / ) ( )[ ] ]

q q
V S J q s q f q h E q

rE f s q h q

ξ

ξ

β λ β λ ξ

β λ β λ ξ κ

+

≥ ≥

+ −

= − + + − + −

− + − − + − −
 

 For the worst case (lowest) demand scenario, 2 ,wξ  firm's operating cash flow is given by 

1 1 2( / ) ( )nv wf h s q hβ λ ξ− − + +  (assuming the firm orders more than the minimum 
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demand).  If  1 1 1 2( / ) ( ) ,nv wf h s q hκ β λ ξ≤ − − + +  then the FDC term in the objective is 

equal to zero for 1 = nvq q , and hence it is optimal to produce .nvq  

 For the rest of the proof , we assume that the firm faces financial distress under 

the worst case demand scenario when 1 = ,nvq q   i.e.,  1 1 1 2( / ) ( ) .nv wf h s q hκ β λ ξ≥ − − + +  

Now let 1q  satisfies 1 1 11( / ) = 0.f s qλ β κ+ − −   Then, 

1 1 1 1 1 1 1 2 12
( | .) = (1 ){ ( ) ( ) [ ] }J q r s q f q h E q rξβ λ β λ ξ βκ++ − + + − + − −   for 1 1q q≤   and,   

1 1 1 1 1 1 1 22
( | .) = ( ) ( ) [ ]J q s q f q h E qξβ λ β λ ξ +− + + − + −  

( / )1 1 1 1
1

1 1 1 1 2 1 2 220
(( / ) ( )( ) ) ( )

f s q
q

hr f s q h q d
λ β κ

λ
ξβ λ β λ ξ κ φ ξ ξ

+ − −
−

++ + − − + − −∫  for 1 1.q q≥  

Consequently, 
1 1

1 1 1
21

( | .) = (1 ){ ( ) ( ) ( )}J q r s f h q
q ξ

β λ β λ∂
+ − + + − + Φ

∂
  for 1 1.q q≤  

1 1
1 1 1

21

( | .) = ( ) ( ) ( )J q s f h q
q ξ

β λ β λ∂
− + + − + Φ

∂
 +                                                      

                    1 1 1 1
1 1 1

2

( / )( / ) ( )f s qr f h s q
hξ

λ β κβ β
λ

+ − −
+ − − Φ −

+
 for 1 1.q q≥  

Following, if 1, 
nvq q≤ then 1

1

(.) | = 0nvq

J
q

∂
∂

 and it is optimal to produce .nvq  On the other 

hand, if 1,
nvq q≥  then 1

1

(.) | < 0nvq

J
q

∂
∂

 and hence, the firm produces less than .nvq  This 

proves the desired result. � 

Proof of Theorem 4.5.8: 

 It suffices to prove that .fq q∗≥  Recall that,  

1 1 1 , | 1 12 2 10 01 1

= arg max ( | = 0) = arg max ( | = 0)Q
P P

q q
q J s x E g s xξ

∗

≥ ≥
  and 

1 1 1 1 , | 1 1 12 2 10 01 1

= arg max ( | = ) = arg max ( | = )f Q
P P

q q
q J s x q E g s x qξ

≥ ≥
 , where 

1 1 1 1 2 1 1 2

2 1 1 1 2 1

( | = 0) = {( ) ( )[ ]

[( / ) ( )[ ] ] },

g s x s q s q h q

r s s q h q

β λ λ ξ

λ β λ ξ κ

+

+ −

− + + − + −

− + − − + − −
  

1 1 1 1 1 1 1 1 2

1 1 1 1 2 1

( | = ) = {( ) ( )[ ]

[( / ) ( )[ ] ] }.

g s x q s q f q h q

r f s q h q

β λ λ ξ

λ β λ ξ κ

+

+ −

− + + − + −

− + − − + − −
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Then,  
1 1

1

( | = 0) =g s x
q

∂
∂ 1 2 { } 2 1 { } { <0}1 2 1 2

{( ) ( ) (( / ) ( ) ) },q q As s h I r s s h I Iξ ξβ λ λ λ β λ≥ ≥− + + − + + + − − +

where 2 1 1 1 2 1= [( / ) ( )[ ] ].A s s q h qλ β λ ξ κ++ − − + − −  

 Observing that 1 1

1

( | = 0)g s x
q

∂
∂

 is concave in 2s  and 1,2 2cvf s≤ , it follows that 

1 1 1 1 1

1 1

( | = 0) ( | = ) .J s x J s x q
q q

∂ ∂
≥

∂ ∂
  Hence, .fq q∗≥  �  
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